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Abstract

We give a new definition of ordinary smooth closure and ordinary smooth interior of an ordinary subset in an ordinary

smooth topological space which have almost all the properties of the corresponding operators in a classical topological

space. As a consequence of these definitions we reduce the additional hypotheses in the results of [1] and also generalize

several properties of the types of compactness in [1].
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1. Introduction

In 1985, Šostak [2] introduced the concept of a fuzzy

topology on a set X as a mapping τ : IX → I satisfy-

ing some natural axioms, where I = [0, 1] and IX denotes

the set of all fuzzy sets in X . In 1992, Chattopadyay et

al. [3] investigated the same structures. They called the

mapping τ : IX → I as a ”gradation of openness of

fuzzy sets inX”. In the same year, Ramadan [4] proposed

a similar definition of a fuzzy topology in Sostak’s sense

called ”smooth topology” replacing I by possibly more
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general lattices. In particular, Kim et al. [5] and M. El-

Dardery et al. [6] studied smooth neighborhood structures

and smooth uniform spaces, respectively. Also, Kim [7]

investigated separation axioms in smooth fuzzy topologi-

cal spaces.

On the other hand, in 1991, Ying [8] gave the defini-

tion of fuzzifying topology on X considering a ”degree of

openness of ordinary subsets of X”. Recently, Hur et al.

[9] gave the similar definition called an ordinary smooth

topolgy on X as a mapping τ : 2X → I satisfying three

axioms, where 2 denotes the two points set {0, 1}. In par-

ticular, Chae et al. [10] studied the set OST(X) of all or-

dinary smooth topologies on X in the sense of a lattice.

Moreover, Lim et al. [1] introduced and investigated clo-

sures, interiors and the types of compactness in ordinary

smooth topological spaces. However the results obtained

include additional conditions since the ordinary smooth

closure and ordinary smooth interior defined there do not

have such nice properties as the closure and interior opera-

tors in a classical topological space.

In this paper, we give a new definition of ordinary

smooth closure and ordinary smooth interior of an ordi-

nary subset in an ordinary smooth topological space which
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have almost all the properties of the corresponding opera-

tors in a classical topological space. As a consequence of

these definitions we reduce the additional hypotheses in the

results of [1] and also generalize several properties of the

types of compactness in [1].

2. Preliminaries

Let 2 = {0, 1} and let 2X denote the set of all ordinary

subsets of a set X .

Definition 2.1[9] Let X be a nonempty set. Then a map-

ping τ : 2X → I is called an ordinary smooth topology

(in short, ost) on X or a gradation of openness of ordinary

subsets of X if τ satisfies the following axioms:

(OST1) τ(∅) = τ(X) = 1.

(OST2) τ(A ∩B) ≥ τ(A) ∧ τ(B), ∀A,B ∈ 2X .

(OST3) τ(
⋃

α∈Γ Aα) ≥
∧

α∈Γ τ(Aα), ∀{Aα} ⊂ 2X .

The pair (X, τ) is called an ordinary smooth topological

space (in short, osts).

We will denote the set of all osts’s on X as OST(X).

Remark 2.2Ying [8] called the mapping τ : 2X → I [resp.

τ : IX → 2 and τ : IX → I] satisfying the axioms in Def-

inition 2.1 as a fuzzyfying topology [resp. fuzzy topology

and bifuzzy topology] on X .

Remark 2.3 If I = 2, then Definition 2.1 coincides with

the known definition of the classical topology.

Definition 2.4[9] Let X be a nonempty set. Then a map-

ping C : 2X → I is called an ordinary smooth cotopology

(in short, osct) on X or a gradation of closedness of ordi-

nary subsets of X if C satisfies the following axioms :

(OSCT1) C(∅) = C(X) = 1.

(OSCT2) C(A ∪B) ≥ C(A) ∧ C(B), ∀A,B ∈ 2X .

(OSCT3) C(
⋂
α∈Γ

Aα) ≥
∧
α∈Γ

C(Aα), ∀{Aα} ⊂ 2X .

The pair (X, C) is called an ordinary smooth cotopolog-

ical space (in short, oscts).

We will denote the set of all oscts’s on X as OSCT(X).

Remark 2.5 If I = 2, then Definition 2.4 also coincides

with the known definition of the classical topology.

Result 2.A[9, Proposition 2.7] Let X be a nonempty set.

We define two mappings f : OST(X) → OSCT(X) and

g : OSCT(X) → OST(X) as follows, respectively :

[f(τ)](A) = τ(Ac), ∀τ ∈ OST(X), ∀A ∈ 2X

and

[g(C)](A) = C(Ac), ∀C ∈ OSCT(X), ∀A ∈ 2X .

Then f and g are well-defined. Furthermore g ◦ f =

idOST(X) and f ◦ g = idOSCT(X).

Remark 2.6 Let f(τ) = Cτ and g(C) = τC . Then, Result

2.A, we can easily see that τCτ = τ and CτC = C.

Definition 2.7[9] Let (X, τ) be an osts and let r ∈ I . Then

we define two ordinary subsets of X as follows :

[τ ]r = {A ∈ 2X : τ(A) ≥ r}
and

[τ ]∗r = {A ∈ 2X : τ(A) > r}.
We call these the r−level set and the strong r-level set of τ ,

respectively.

It is clear that [τ ]0 = 2X , the classical discrete topol-

ogy on X and [τ ]∗1 = ∅. Also it can be easily seen that

[τ ]∗r ⊂ [τ ]r for each r ∈ I .

Result 2.B[9, Proposition 2.10] Let (X, τ) be an osts and

let T (X) denote the set of all classical topologies on X .

Then :

(a) [τ ]r ∈ T(X), ∀r ∈ I .

(a)′ [τ ]∗r ∈ T(X), ∀r ∈ I1.

(b) For any r, s ∈ I , if r ≤ s, then [τ ]s ⊂ [τ ]r and [τ ]∗s ⊂
[τ ]∗r .

(c) [τ ]r =
⋂
s<r

[τ ]s, ∀r ∈ I0.

(c)′ [τ ]∗r =
⋃
s>r

[τ ]∗s , ∀r ∈ I1, where I1 = [0, 1) and I0 =

(0, 1].

Definition 2.8[1] Let (X, τ) be an osts, let r ∈ I and let

A ∈ 2X . Then the [τ ]r- closure [resp. [τ ]r -interior] of
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A, denoted by clr(A) or Ār [resp. intr(A) or
◦
Ar], is de-

fined by

clr(A) or Ār =
⋂

{F ∈ 2X : F ∈ F[τ ]r andA ⊂ F}

[resp, intr(A) or
◦
Ar =

⋃
{U ∈ 2X : U ∈ [τ ]r andU ⊂ A}],

where F[τ ]r denotes the set of all [τ ]r- closed sets in X .

3. Ordinary smooth closure and interior

redefined

Definition 3.1 Let (X, τ) be an osts and let A ∈ 2X . Then

the ordinary smooth closure [resp. ordinary smooth inte-

rior] of A in X , denoted by Ā [resp.
◦
A ], is defined by

Ā =
⋂

{F ∈ 2X : A ⊂ F and Cτ (F) > 0}

[resp.
◦
A =

⋃
{U ∈ 2X : U ⊂ A and τ(U) > 0}].

Proposition 3.2 Let (X, τ) be an ordinary smooth topolog-

ical space and let A,B ∈ 2X . Then:

(a) If A ⊂ B, then
◦
A ⊂

◦
B and Ā ⊂ B̄.

(b) (
◦
A)c = (Ac).

(c)
◦
A = ((Ac))c.

(d) Ā = ((Ac)◦)c.

(e) (Ā)c = (Ac)◦.

Proof. (a) It follows directly from Definition 3.1.

(b)

(
◦
A)c = (

⋃
{U ∈ 2X : U ⊂ A and τ(U) > 0})c

=
⋂

{U c ∈ 2X : Ac ⊂ U c and τ(U)

= Cτ (U c) > 0}
=

⋂
{F ∈ 2X : Ac ⊂ F and Cτ (F) > 0}

= (Ac).

(c), (d) and (e) can be easily derived from (b).

Remark 3.3 Let (X,T ) be a classical topological space.

We define a mapping τT : 2X → I as follows: For each

A ∈ 2X ,

τT (A) =

⎧⎨
⎩
1, if A ∈ T,

0, if A ∈ T.

Then we can easily see that τT ∈ OST(X). Moreover,

we can identify τT with T , and we can also identify CτT
with T . Thus, for each A ∈ 2X , the τT -ordinary smooth

closure and τT -ordinary interior of A are followings, re-

spectively:

Ā =
⋂

{F ∈ 2X : A ⊂ F and CτT(F) > 0}
=

⋂
{F ∈ 2X : A ⊂ F and Fc ∈ T}

and

◦
A =

⋃
{U ∈ 2X : U ⊂ A and τ(U) > 0}

=
⋃

{U ∈ 2X : U ⊂ A and U ∈ T}.

So this shows that Ā and
◦
A are exactly closure and interior

of A in a classical topological space (X, τ), respectively.

Proposition 3.4 Let (X, τ) be an osts and let A,B ∈ 2X .

Then:

(a)
◦
X = X .

(b)
◦
A ⊂ A.

(c) (
◦
A)◦ =

◦
A.

(d) (A ∩B)◦ ⊂
◦
A ∩

◦
B.

Proof. From Definition 3.1, (a) and (b) can be easily ob-

tained.

(c) By (b), it is clear that (
◦
A)◦ ⊂

◦
A. On the other hand,

(
◦
A)◦ =

⋃
{U ∈ 2X : U ⊂

◦
A and τ(U) > 0}

=
⋃

{U ∈ 2X : τ(U) > 0 and

U ⊂
⋃

{V ∈ 2X : V ⊂ A and τ(V) > 0}}
⊃

⋃
{U ∈ 2X : U ⊂ A and U ⊂ A}

=
◦
A.

So (
◦
A)◦ =

◦
A.

(d) It is obvious that A ∩ B ⊂ A and A ∩ B ⊂ B.

Then, by (b), (A ∩ B)◦ ⊂
◦
A and (A ∩ B)◦ ⊂

◦
B. Thus

(A ∩B)◦ ⊂
◦
A ∩

◦
B.

Proposition 3.5 Let (X, τ) be an ordinary smooth topolog-

ical space and let A,B ∈ 2X . Then:

(a) ∅̄ = ∅.
(b) A ⊂ Ā.

(c) (Ā) = Ā.

(d) Ā ∪ B̄ ⊂ A ∪B.
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Proof. The proofs are similar to that of Proposition 3.5.

Proposition 3.6 Let (X, τ) be an osts and let A ∈ 2X .

Then:

(a) If τ(A) > 0, then A =
◦
A.

(b) If Cτ (A) > 0, then A = Ā.

(c) If there is an r ∈ I0 such that A = Ār, then A = Ā.

(d) If there is an r ∈ I0 such that A =
◦
Ar, then A =

◦
A.

Proof. (a) Suppose τ(A) > 0. Then A ∈ {U ∈ 2X :

U ⊂ A and τ(U) > 0}. Thus A ⊂ ⋃{U ∈ 2X :

U ⊂ A and τ(U) > 0}. By Definition 3.1, A ⊂
◦
A.

By Proposition 3.5 (b), clearly
◦
A ⊂ A. So A =

◦
A.

(b) Suppose Cτ (A) > 0. Then τ(Ac) = Cτ (A) > 0.

Thus, by (a), Ac = (Ac)◦. So A = ((Ac)◦)c. Hence, by

Proposition 3.2 (d), A = Ā.

(c) Suppose the sufficient condition holds. Then

Ā =
⋂

{F ∈ 2X : A ⊂ F and Cτ (F) > 0}
=

⋂
[
⋂
s∈I0

{F ∈ 2X : A ⊂ F and Cτ (F) ≥ s}]

=
⋂
s∈I0

[
⋂

{F ∈ 2X : A ⊂ F and F ∈ [Cτ ]s}]

=
⋂
s∈I0

Ās.

Thus

A ⊂ Ā [By Proposition 3.6 (b)]

=
⋂
s∈I0

Ās

⊂ Ār

= A. [By the hypothesis].

So Ā = A.

(d) Suppose the sufficient condition holds. Then

◦
A =

⋃
{U ∈ 2X : U ⊂ A and τ(U) > 0}

=
⋃

{U ∈ 2X : τ(U) > 0 and U ⊂
◦
Ar}

[By the hypothesis]

=
⋃

[{U ∈ 2X : τ(U) > 0 and

U ⊂
⋃

{V ∈ 2X : τ(V ) ≥ r and V ⊂ A}].
On the other hand,

τ(
◦
Ar) ≥

∧
{τ(V ) : V ∈ 2X , τ(V ) ≥ r and U ⊂ A}

≥ r > 0.

Thus
◦
Ar ∈ {U ∈ 2X : τ(U) > 0 and U ⊂

◦
Ar}. So

◦
Ar ⊂

◦
A. By Proposition 3.5 (b) and the hypothesis,

A =
◦
Ar ⊂

◦
A ⊂ A.

Hence
◦
A = A. This completes the proof.

Definition 3.7 Let (X, τ1) and (Y, τ2) be two osts’s. Then

a mapping f : X → Y is said to be :

(i)[8] ordinary smooth continuous if τ2(A) ≤
τ1(f

−1(A)), ∀A ∈ 2Y .

(ii)[4] ordinary weakly smooth continuous if for each

A ∈ 2Y ,

τ2(A) > 0 ⇒ τ(f−1(A)) > 0.

It is clear that if f is ordinary smooth continuous, then f

is ordinary weakly smooth continuous.

Proposition 3.8 Let (X, τ1) and (Y, τ2) be two osts’s and

let a mapping f : X → Y be ordinary weakly smooth

continuous. Then:

(a) f(Ā) ⊂ f(A), ∀A ∈ 2X .

(b) f−1(B) ⊂ f−1(B̄), ∀B ∈ 2Y .

(c) f−1(
◦
B) ⊂ (f−1(B))◦, ∀B ∈ 2Y .

Proof. (a) Let A ∈ 2X . Then

f−1(f(A))

= f−1(
⋂

{F ∈ 2Y : Cτ2(F ) > 0 and f(A) ⊂ F})
=

⋂
{f−1(F ) ∈ 2X : F ∈ 2Y , Cτ2(F ) > 0

and A ⊂ f−1(F )}
⊃ ∩{f−1(F ) ∈ 2X : F ∈ 2Y , Cτ1(f−1(F )) > 0

and A ⊂ f−1(F )}
[Since f is ordinary weakly smooth continuous]

=
⋂

{B ∈ 2X : Cτ1(B) > 0 and A ⊂ B}
= Ā.

Thus f(Ā) ⊂ f(A).

(b) Let B ∈ 2Y . Then f−1(B) ∈ 2X .

f(f−1(B)) ⊂ f(f−1(B)) [By (a)]

= B̄.

So

f−1(B) ⊂ f−1[f(f−1(B))] ⊂ f−1(B̄).
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Hence f−1(B) ⊂ f−1(B̄).

(c) Let B ∈ 2Y . Then

f−1(Bc) = f−1(
◦
B)c) [By Proposition 3.2 (b)]

= (f−1(
◦
B))c

⊃ f−1(Bc) [By (b) and Proposition 3.2 (c)]

= (f−1(B))c

= [(f−1(B))◦]c [By Proposition 3.2 (b)].

So f−1(
◦
B) ⊂ (f−1(B))◦.

The following is the immediate result of Definition 3.7

and Proposition 3.8.

Corollary 3.9 Let (X, τ1) and (Y, τ2) be two osts’s and let

f : X → Y be ordinary smooth continuous. Then:

(a) f(Ā) ⊂ f(A), ∀A ∈ 2X .

(b) f−1(B) ⊂ f−1(B̄), ∀B ∈ 2Y .

(c) f−1(
◦
B) ⊂ (f−1(B))◦, ∀B ∈ 2Y .

Definition 3.10[11] Let (X, τ1) and (Y, τ2) be two ordinary

smooth topological spaces. Then a mapping f : X → Y

is said to be:

(i)ordinary smooth open if τ1(A) ≤ τ2(f(A)),

∀A ∈ 2X .

(ii) ordinary smooth closed if Cτ1(A) ≤ Cτ2(f(A)),
∀A ∈ 2X .

Proposition 3.11 Let (X, τ1) and (Y, τ2) be two ordinary

smooth topological spaces. Suppose f : X → Y is ordi-

nary smooth open, then f(
◦
A) ⊂ (f(A))◦ for each A ∈ 2X .

Proof. Let A ∈ 2X . Then

f(
◦
A) = f(

⋃
{U ∈ 2X : τ1(U) > 0 and U ⊂ A})

⊂
⋃

{f(U) ∈ 2Y : U ∈ 2X , τ1(U) > 0

and f(U) ⊂ f(A)}
⊂

⋃
{f(U) ∈ 2Y : U ∈ 2X , τ2(f(U)) > 0

and f(U) ⊂ f(A)}
[Since f is ordinary smooth open]

=
⋃

{V ∈ 2Y : τ2(V ) > 0 and V ⊂ f(A)}
= (f(A))◦.

Thus f(
◦
A) ⊂ (f(A))◦.

4. Some types of ordinary smooth

compactness

For an ordinary smooth topological space (X, τ), we

will denote the set {A ∈ 2X : τ(A) > 0} as S(τ) and

we will call it as the support of τ .

Definition 4.1[1] An ordinary smooth topological space

(X, τ) is said to be:

(i) ordinary smooth compact if for every family

{Aα}α∈Γ in S(τ) covering X , these is a finite subset Γ0

of Γ such that
⋃

α∈Γ0
Aα = X .

(ii) ordinary smooth nearly compact if for every family

{Aα}α∈Γ in S(τ) coveringX , there is a finite subset Γ0 of

Γ such that
⋃

α∈Γ0
(Aα)

◦ = X .

(iii) ordinary smooth almost compact if for every family

{Aα}α∈Γ in S(τ) coveringX , there is a finite subset Γ0 of

Γ such that
⋃

α∈Γ0
Aα = X .

Proposition 4.2 Ordinary smooth compactness ⇒ ordinary

smooth near compactness ⇒ ordinary smooth almost com-

pactness.

Proof. Suppose (X, τ) be an ordinary smooth compact

space. Let {Aα}α∈Γ be any family in S(τ) covering X ,

i.e.,
⋃

α∈Γ Aα = X . Then, by the hypothesis, ∃ a finite

subset Γ0 of Γ such that
⋃

α∈Γ0
Aα = X . Since {Aα}α∈Γ

is a family in S(τ), Aα ∈ S(τ) for each α ∈ Γ, i.e.,

τ(Aα) > 0 for each α ∈ Γ. Thus, by Proposition 3.6

(a), Aα =
◦
Aα for each α ∈ Γ. So

Aα =
◦
Aα ⊂ (Aα)

◦ for eachα ∈ Γ.

Hence

X =
⋃

α∈Γ0

Aα ⊂
⋃

α∈Γ0

(Aα)
◦, i.e.,

⋃
α∈Γ0

(Aα)
◦ = X.

Therefore (X, τ) is ordinary smooth nearly compact.

Now suppose (X, τ) is ordinary smooth nearly com-

pact. Let {Aα}α∈Γ be any family in S(τ) covering X .
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Then, by the hypothesis, ∃ a finite subset Γ0 of Γ such that⋃
α∈Γ0

(Aα)
◦ = X . On the other hand,

Aα =
◦
Aα

[Since {Aα}α∈Γ is a family inS(τ), by Proposition 3.6 (a)]

⊂ (Aα)
◦

⊂ Aα for eachα ∈ Γ [By Proposition 3.5 (b)].

Thus X =
⋃

α∈Γ0
(Aα)

◦ ⊂ ⋃
α∈Γ0

Aα, i.e., X =⋃
α∈Γ0

Aα. Hence (X, τ) is ordinary smooth almost com-

pact.

In a classical topological space, the converses of these

two implications are not valid for compactness, near com-

pactness and almost compactness. Thus, the converse im-

plications in Proposition 4.2 are not true, in general.

Proposition 4.3 Let (X, τ1) and (Y, τ2) be two osts’s and

let f : X → Y be surjective and ordinary weakly smooth

continuous. If (X, τ1) is ordinary smooth almost compact,

then so is (Y, τ2).

Proof. Suppose f : X → Y is surjective and ordinary

weakly smooth continuous. Let {Aα}α∈Γ be any fam-

ily in S(τ2) covering Y , i.e.,
⋃

α∈Γ Aα = Y . Then

f−1(Y ) = X =
⋃

α∈Γ f
−1(Aα). Since f is ordinary

weakly smooth continuous, {f−1(Aα)}α∈Γ is a family in

S(τ1). Sice (X, τ1) is ordinary smooth almost compact, ∃
a finite subset Γ0 of Γ such that X =

⋃
α∈Γ0

f−1(Aα).

Thus

Y = f(X) [Since f is surjective]

= f(
⋃

α∈Γ0

f−1(Aα))

=
⋃

α∈Γ0

f((f−1(Aα))) [By Proposition 3.8 (a)]

⊂
⋃

α∈Γ0

f(f−1(Aα))

=
⋃

α∈Γ0

Aα [Since f is surjective]

So Y =
⋃

α∈Γ0
Aα. Hence (Y, τ2) is ordinary smooth al-

most compact.

The following is the immediate result of propositions 4.2

and 4.3.

Corollary 4.4 Let (X, τ1) and (Y, τ2) be two osts’s and

let f : X → Y be surjective and ordinary weakly smooth

continuous. If (X, τ1) is ordinary smooth nearly compact,

then (Y, τ2) is ordinary smooth almost compact.

The following is the immediate result of Definition 3.7,

Proposition 4.3 and Corollary 4.4.

Corollary 4.5 Let (X, τ1) and (Y, τ2) be two osts’s and let

f : X → Y be surjective and ordinary smooth continuous.

(a) If (X, τ1) is ordinary smooth almost compact, then so

is (Y, τ2).

(b) If (X, τ1) is ordinary smooth nearly compact, then

(Y, τ2) is ordinary smooth almost compact.

Definition 4.6[1] An osts (X, τ) is said to be ordi-

nary smooth regular if A = ∪{F ∈ 2X : τ(F ) ≥
τ(A) and F̄ ⊂ A} for each A ∈ S(τ).

Result 4.A[1, Proposition 5.4(a)] Every ordinary smooth

almost compact and ordinary smooth regular space is ordi-

nary smooth compact.

The following is the immediate result of Proposition 4.2

and Result 4.A.

Proposition 4.7 Every ordinary smooth nearly compact

and ordinary smooth regular space is ordinary smooth com-

pact.
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