DOI QR코드

DOI QR Code

Effects of Electrochemical Oxidation of Carbon Fibers on Mechanical Interfacial Properties of Carbon Fibers-reinforced Polarized-Polypropylene Matrix Composites

전기화학적 산화처리가 탄소섬유/극성화된 폴리프로필렌 복합재의 기계적 계면 특성에 미치는 영향

  • Kim, Hyun-Il (Korea Institute of Carbon Convergence Technology, R&D Division) ;
  • Choi, Woong-Ki (Korea Institute of Carbon Convergence Technology, R&D Division) ;
  • Oh, Sang-Yub (Korea Institute of Carbon Convergence Technology, R&D Division) ;
  • An, Kay-Hyeok (Korea Institute of Carbon Convergence Technology, R&D Division) ;
  • Kim, Byung-Joo (Korea Institute of Carbon Convergence Technology, R&D Division)
  • 김현일 (한국탄소융합기술원 연구개발본부) ;
  • 최웅기 (한국탄소융합기술원 연구개발본부) ;
  • 오상엽 (한국탄소융합기술원 연구개발본부) ;
  • 안계혁 (한국탄소융합기술원 연구개발본부) ;
  • 김병주 (한국탄소융합기술원 연구개발본부)
  • Published : 2013.10.31

Abstract

In this work, the effects of electrochemical oxidation of carbon fiber surfaces on mechanical interfacial properties of carbon fibers-reinforced polarized-polypropylene matrix composites were studied with various current densities during the treatments. Surface properties of the fibers before and after treatments were observed by SEM, AFM, XPS, and contact angle measurements. Mechanical interfacial properties of the composites were measured in terms of critical stress intensity factor ($K_{IC}$). From the results it was found that $O_{1s}$ peaks of the fiber surfaces were strengthened after electrochemical oxidation which led to the enhancement of surface free energy of the fiber, resulting in good mechanical performance of the composites. It can be concluded that electrochemical oxidation of the carbon fiber surfaces can control the interfacial adhesion between the carbon fibers and polarized-polypropylene in this composites system.

본 연구에서는 탄소섬유 표면에 가해진 전기화학적 산화처리가 탄소섬유강화 극성화된 폴리프로필렌 기지 복합재료의 기계적 계면 물성에 미치는 영향을 알아보기 위해 전류밀도 변수에 따른 섬유표면의 변화를 관찰하였다. 표면처리 전후의 탄소섬유 표면특성은 주사전자현미경과 원자현미경, 적외선분광법, X선광전자분광법과 접촉각으로 분석하였다. 탄소섬유강화복합재의 기계적 계면특성은 임계응력세기인자를 측정하여 평가하였다. 실험 결과 전기화학적 산화처리 후 섬유 표면의 $O_{1s}$ 피크의 증가를 관찰할 수 있었고, 이는 섬유의 표면자유에너지의 증가를 유도하며, 탄소섬유와 폴리프로필렌의 계면 결합력이 증가된 것으로 판단된다. 결론적으로 탄소섬유강화복합재료의 기계적 물성은 탄소섬유와 극성 폴리프로필렌 기지와의 계면 강도조절을 통해 가능할 것으로 판단된다.

Keywords

References

  1. S. Yumitori and Y. Nakanishi, Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix: part 1 comparison between $H_2SO_4$ and NaOH solution, Composites Part A, 27A, 1051 (1996).
  2. M. M. Schwartz, Composite Materials Handbook", 2nd ed., McGrawHill, NewYork (1992).
  3. W. S. Smith, Engineered Materials Handbook, Vol. 1, ASM International, Ohio (1987).
  4. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed., p. 95-121, Marcel Dekker, NewYork (1990).
  5. E. Fitzer, Carbon Fibers and Their Composites, Springer, Berlin (1985).
  6. K. E. Choi and M. K. Seo, A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites, Carbon Lett., 14, 58 (2013). https://doi.org/10.5714/CL.2012.14.1.058
  7. E. Jeong, J. Kim, S. H. Cho, J. il. Kim, I. S. Han, and Y. S. Lee, New application of layered silicates for carbon fiber reinforced carbon composites, J. Ind. Eng. Chem., 17, 191 (2011). https://doi.org/10.1016/j.jiec.2011.02.032
  8. R. S. Bauer, Epoxy Resin Chemistry, ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington DC (1979).
  9. S. J. Park, Interfacial Forces and Fields: Theory and Applications, ed. By J. P. Hsu, chap. 9, Marcel Dekker, New York (1999).
  10. A. R. Sandi and M. R. Piggott, Interfacial effects in carbon-epoxies, J. Mater. Sci., 20, 432 (1985).
  11. H. S. Schwartz and J. T. Hartness, in "Toughened Composites" (Ed. N. Johnston), ASTM STP 937, American Society for Testing and Materials, Philadelphia, PA, 150 (1987).
  12. S. Motozuka, M. Tagaya, Y. Hotta, M. Morinaga, T. Ikoma, T. Honma, T. Daimon, and J. Tanaka, Mechanochemical Fabrication of Carbon Fiber/Nylon-6 Composites with Interfacial Bondings, Ind. Eng. Chem. Res., 52, 2182 (2013). https://doi.org/10.1021/ie301333n
  13. S. L. Chuang, N. J. Chu, and W. T. Whang, Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics, J. Appl. Polymer Sci., 41, 373 (1990). https://doi.org/10.1002/app.1990.070410129
  14. R. V. Subramanian et al., Electrodesposition of a Polymer Interphase in Carbon-Fiber Composites, Polym. Compos., 7, 201 (1986). https://doi.org/10.1002/pc.750070403
  15. P. E. Vickers, J. F. Watts, C. Perruchot, and M. M. Chehimi, The surface chemistry and acid-base properties of a PAN-basedcarbon fibre, Carbon, 38, 675 (2000). https://doi.org/10.1016/S0008-6223(99)00137-2
  16. J. Gulya, E. Foldes, A. Lazar, and B. Pukanszky, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion, Composites. Part A, 32, 353 (2001). https://doi.org/10.1016/S1359-835X(00)00123-8
  17. A. Fukunaga, S. Ueda, and M. Magumo, Anodic surface oxidation mechanisms of PAN-based and pitch-based carbon fibres, J. Mater. Sci., 34, 2851 (1999). https://doi.org/10.1023/A:1004679200908
  18. M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinson, and J. M. Savent, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801 (1997). https://doi.org/10.1016/S0008-6223(97)00010-9
  19. M. R. Alexander and F. R. Jones, Effect of electrolytic oxidation upon the surface chemistry of type A carbon fibres-Part II, analysis of derivatised surface functionalities by XPS, and TOF SIMS, Carbon, 33, 569 (1995). https://doi.org/10.1016/0008-6223(94)00142-M
  20. M. A. Montes-Moran, A. Martinez-Alonso, J. M. D. Tascon, and R. J. Young, Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres, Composites. Part A., 32, 361 (2001). https://doi.org/10.1016/S1359-835X(00)00109-3
  21. J. Li, Effect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites, Iran. J. Chem. Chem. Eng., 29 (2010).
  22. M. H. Choi, B. H. Jeon, and I. J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polymer, 41, 3243 (2000). https://doi.org/10.1016/S0032-3861(99)00532-7
  23. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461 (2002) https://doi.org/10.1016/S0008-6223(02)00152-5
  24. A. Fukunaga and S. Ueda, Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices, Compos. Sci. Technol., 60, 249 (2000). https://doi.org/10.1016/S0266-3538(99)00118-9
  25. C. H. Tessmer, R. D. Vidic, and L. J. Uranowski, Impact of Oxygen-Containing Surface Functional Groups on Activated Carbon Adsorption of Phenols, Environ. Sci. Tech., 31, 1872 (1997). https://doi.org/10.1021/es960474r
  26. T. A. DeVilbiss, D. L. Messick, D. J. Messick, and J. P. Wightman, SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites, Composites, 16, 207 (1985). https://doi.org/10.1016/0010-4361(85)90604-4
  27. X. P. Yang, C. Z. Wang, Y. H. Yu, and S. K. Ryu, Improvement of CF/ABS Composite Properties by Anodic Oxidation of Pitch based C-type Carbon Fiber, Carbon. Lett., 3, 80 (2002).
  28. Y. Q. Wang, H. Viswanathan, A. A. Audi, and P. M. A. Sherwood, X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. 22. Comparison between Surface Treatment of Untreated and Previously Surface-Treated Fibers, Chem. Mater., 12, 1100 (2000). https://doi.org/10.1021/cm990734e
  29. H. Yildirim Erbi, Evaporation of pure liquid sessile and spherical suspended drops: A review, Adv. Colloid. Interface. Sci., 170, 67 (2012). https://doi.org/10.1016/j.cis.2011.12.006
  30. Y. S. Yu, Z. Wang, and Y. Zhao, Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces, Adv. Colloid. Interface. Sci., 365, 254 (2012). https://doi.org/10.1016/j.jcis.2011.09.007
  31. G. Viswanadam and G. G. Chase, Contact angles of drops on curved superhydrophobic surfaces, J. Colloid. Interface. Sci., 367, 472 (2012). https://doi.org/10.1016/j.jcis.2011.11.004
  32. S. J. Park, J. S. Oh, and J. R. Lee, Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites, J. Korean Soc. Comp. Mater., 15, 16 (2002).
  33. D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Poly. Sci., 13, 1741 (1969). https://doi.org/10.1002/app.1969.070130815
  34. S. J. Park, M. H. Kim, J. R. Lee, and S. W. Choi, Effect of FiberPolymer Interactions on Fracture Toughness Behavior of CarbonFiber-Reinforced Epoxy Matrix Composites, J. Colloid. Interface. Sci., 228, 287 (2000). https://doi.org/10.1006/jcis.2000.6953
  35. S. B. Rho and M. A. Lim, Determination of Contact Angle and Surface Free Energy of Polymer Powder by Wicking Method, Korean. Chem. Eng. Res., 36, 215 (1998).
  36. C. J. Van Oss, R. F. Giese, Z. Li, K. Murphy, and K. Norris, M. K. Chaudhury, R. J. Good, Determination of contact angles and pore sizes of porous media by column and thin layer wicking, J. Adhesion. Sci. Technol., 6, 413 (1992). https://doi.org/10.1163/156856192X00755
  37. S. J. Park, T. J. Kim, J. R. Lee, S. K. Hong, and Y. K. Kim, Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composite, Korea Polym. J., 24, 326 (2000).
  38. S. J. Park, J. S. Oh, and D. H. Suh, Influence of Ozone Treatment of Carbon Fibers on GIIC of Carbon Fiber-reinforced Composites, J. Korean Ind. Eng. Chem., 14, 586 (2003).
  39. F. M. Fowkes, Determination of interfacial tensions contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces, J. Phys. Chem., 66, 382 (1962). https://doi.org/10.1021/j100808a524
  40. R. J. Good, in Contact Angle, Wettability and Adhesion, K. L. Mittal, ed., VSP, Utrecht, Netherlands (1993).
  41. B. J. Kim and S. J. Park, Effects of carbonyl group formation on ammonia adsorption of porous carbon surfaces, J. Colloid. Int. Sci., 311, 311 (2007). https://doi.org/10.1016/j.jcis.2007.02.059
  42. A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc. Lond. A., 221, 163 (1920).
  43. S. J. Park, J. S. Oh, and D. H. Suh, Crack Resistance Properties of Anodized Carbon Fibers/Epoxy Matrix Composites, Korean Chem. Eng. Res., 42, 102 (2004).
  44. F. L. Jin and S. J. Park, Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer, Mater. Sci. Eng. A., 478, 402 (2008). https://doi.org/10.1016/j.msea.2007.05.053
  45. S. J. Park, M. K. Seo, and J. R. Lee, Roles of interfaces between carbon fibers and epoxy matrix on interlaminar fracture toughness of composites, Compos. Interf., 13, 249 (2006). https://doi.org/10.1163/156855406775997079
  46. K. Gotoh, in Polymer Surface Modification: Relevance to Adhesion, 3, K. L. Mittal, ed., VSP, Utrecht, Netherlands (2004).