Investigation on CO Adsorption and Catalytic Oxidation of Commercial Impregnated Activated Carbons

상용 첨착활성탄의 일산화탄소 흡착성능 및 촉매산화반응 연구

  • Ko, Sangwon (Eco-Transport Research Division, Korea Railroad Research Institute) ;
  • Kim, Dae Han (Department of Chemistry, Sungkyunkwan University) ;
  • Kim, Young Dok (Department of Chemistry, Sungkyunkwan University) ;
  • Park, Duckshin (Eco-Transport Research Division, Korea Railroad Research Institute) ;
  • Jeong, Wootae (Eco-Transport Research Division, Korea Railroad Research Institute) ;
  • Lee, Duck Hee (Eco-Transport Research Division, Korea Railroad Research Institute) ;
  • Lee, Jae-Young (Eco-Transport Research Division, Korea Railroad Research Institute) ;
  • Kwon, Soon-Bark (Eco-Transport Research Division, Korea Railroad Research Institute)
  • 고상원 (한국철도기술연구원 에코시스템연구실) ;
  • 김대한 (성균관대학교 화학과) ;
  • 김영독 (성균관대학교 화학과) ;
  • 박덕신 (한국철도기술연구원 에코시스템연구실) ;
  • 정우태 (한국철도기술연구원 에코시스템연구실) ;
  • 이덕희 (한국철도기술연구원 에코시스템연구실) ;
  • 이재영 (한국철도기술연구원 에코시스템연구실) ;
  • 권순박 (한국철도기술연구원 에코시스템연구실)
  • Published : 2013.10.31

Abstract

We investigated the properties of impregnated activated carbons, a commercial adsorbent for the individual protection equipment, and examined CO adsorption and oxidation to $CO_2$. The surface area, pore volume and pore size were measured for four commercial samples using Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET/BJH), and atomic compositions of the sample surface were analyzed based on SEM/EDS and XPS. Impregnated activated carbons containing Mn and Cu for fire showed the catalytic CO oxidation to $CO_2$ with a high catalytic activity (up to 99% $CO_2$ yield), followed by the CO adsorption at an initial reaction time. On the other hand, C: for chemical biologial and radiological (CBR) samples, not including Mn, showed a lower CO conversion to $CO_2$ (up to 60% yield) compared to that of fire samples. It was also found that a heat-treated activated carbon has a higher removal capacity both for CO and $CO_2$ at room temperature than that of untreated carbon, which was probably due to the impurity removal in pores resulted in a detection-delay about 30 min.

본 연구에서는 화재나 화생방전 시 비상대피에 사용되는 상용 방독면의 흡착소재인 첨착활성탄의 특성을 분석하고 일산화탄소(CO)의 흡착성능 및 산화반응을 조사하고자 하였다. 대표 제품 4개를 선정하여 BET/BJH 측정을 통해 각 활성탄소의 비표면적, 기공부피 및 기공크기를 비교분석하고 SEM/EDS와 XPS를 이용한 표면 성분분석을 수행하여 일산화탄소 제거 효율간의 관계를 연구하였다. 불순물 제거를 위한 전처리(heat-treatment) 후 망간(Mn)과 구리(Cu)가 주 금속으로 첨착되어 있는 화재용 시료에서는 업체에 관계없이 반응 초기에 일산화탄소의 흡착을 보였고 이후 활성 탄소 내에 첨착된 금속 촉매에 의해 최대 99%의 이산화탄소($CO_2$) 변환율로 높은 촉매활성을 보이며 산화반응이 진행되었다. 망간(Mn)을 함유하지 않은 화생방용 시료의 경우 이산화탄소로의 변환율은 최대 60%로서 화재용 시료에 비해 떨어짐을 관찰하였다. 화재용 시료의 전처리 유무에 따른 일산화탄소 반응성 조사에서는 전처리 후 기공 내 불순물 제거 효과로 상온에서 이산화탄소의 검출시간이 약 30 min간 지연되어 일산화탄소와 이산화탄소에 대해 모두 더 높은 제거율을 보임을 확인하였다.

Keywords

References

  1. H. Over, Y. D. Kim, A. P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, and G. Ertl, Atomic-scale structure and catalytic reactivity of the $RuO_2$ (110) surface, Science, 287, 1474 (2000). https://doi.org/10.1126/science.287.5457.1474
  2. R. Toyoshima, M. Yoshida, Y. Monya, Y. Kousa, K. Suzuki, H. Abe, B. S. Mun, K. Mase, K. Amemiya, and H. Kondoh, In Situ Ambient Pressure XPS Study of CO Oxidation Reaction on Pd (111) Surfaces, J. Phys. Chem. C, 116, 18691 (2013).
  3. M. Haruta, N, Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
  4. A. Cho, Connecting the dots to custom catalysts, Science, 299, 1684 (2003). https://doi.org/10.1126/science.299.5613.1684
  5. M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science, 281, 1647 (1998). https://doi.org/10.1126/science.281.5383.1647
  6. H. O. Seo, S. H. Jeong, H. J. Lee, H.-G. Jee, J.-H. Boo, D. C. Lim, and Y. D. Kim, CO oxidation on rough Au thin films grown on Si wafer, Appl. Catal. A, 347, 112 (2008). https://doi.org/10.1016/j.apcata.2008.06.010
  7. A. D. Pandey, C. Jia, W. Schmidt, M. Leoni, M. Schwickardi, F. Schuth, and C. Weidenthaler, Size-Controlled Synthesis and Microstructure Investigation of $Co_3O_4$ Nanoparticles for Low-Temperature CO Oxidation, J. Phys. Chem. C, 116, 19405 (2012). https://doi.org/10.1021/jp306166g
  8. H. O. Seo, J. W. Nam, K.-D. Kim, J. K. Sim, Y. D. Kim, and D. C. Lim, CO oxidation of Ni films supported by carbon fiber, J. Mol. Catal. A, 361, 45 (2012).
  9. G. Wu, N. Guan, and L. Li, Low temperature CO oxidation on $Cu-Cu_2O/TiO_2$ catalyst prepared by photodeposition, Catal. Sci. Technol., 1, 601 (2011). https://doi.org/10.1039/c1cy00036e
  10. K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, and Y.-F. Han, Re-investigating the CO oxidation mechanism over unsupported MnO, $Mn_2O_3$ and $MnO_2$ catalysts, Catal. Today, 131, 477 (2008). https://doi.org/10.1016/j.cattod.2007.10.061
  11. A. D. Pandey, C. Jia, W. Schmidt, M. Leoni, M. Schwickardi, F. Schuth, and C. Weidenthaler, Size-Controlled Synthesis and Microstructure Investigation of $Co_3O_4$ Nanoparticles for Low-Temperature CO Oxidation, J. Phys. Chem. C, 116, 19405 (2012). https://doi.org/10.1021/jp306166g
  12. M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction, J. Catal., 197, 113 (2001). https://doi.org/10.1006/jcat.2000.3069
  13. M. Comotti, W.-C. Li, B. Spliethoff, and F. Schuth, Support effect in high activity gold catalysts for CO oxidation, J. Am. Chem. Soc., 128, 917 (2006). https://doi.org/10.1021/ja0561441
  14. D. A. Bulushev, I. Yuranov, E. I. Suvorova, P. A. Buffat, and L. Kiwi-Minsker, Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation, J. Catal., 224, 8 (2004).
  15. K.-D. Kim, E. J. Park, H. O. Seo, M.-G. Jeong, Y. D. Kim, and D. C. Lim, Effect of thin hydrophobic films for toluene adsorption and desorption behavior on activated carbon fiber under dry and humid conditions, Chem. Eng. J., 200, 133 (2012).
  16. G. K. Prasad, B. Singh, and R. Vijayaraghavan, Respiratory protection against chemical and biological warfare agents, Def. Sci. J., 58, 686 (2008).
  17. W. Y. Hernndez, M. A. Centeno, S. Ivanova, P. Eloy, E. M. Gaigneaux, and J. A. Odriozola, Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions, Appl. Catal. B, 123, 27 (2012).