Antioxidant Activity of Dietary Fibers from Tubers and Stalks of Sweet Potato and Their Anti-cancer Effect in Human Colon Cancer

고구마 괴근과 잎자루 식이섬유의 항산화 효과 및 인간 대장암세포에 대한 항암작용

  • Jeong, Haeng Soon (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Joo, Hyun (Department of Physiology, College of Medicine, Inje University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 정행순 (신라대학교 의생명과학대 생명공학과) ;
  • 주현 (인제대학교 의과대학 생리학교실) ;
  • 이재화 (신라대학교 의생명과학대 생명공학과)
  • Published : 2013.10.31

Abstract

Contents of the total polyphenols and flavonoids in the dietary fiber from tubers and stalks of domestic sweet potatoes were investigated. In addition, their antioxidant activity as well as the potent anti-cancer effects through the growth inhibition in human colon cancer cells (HT-29) in vitro were tested. The total flavonoids as naringin equivalents in dietary fiber from tubers and stalks of sweet potatoes were $0.5{\pm}0.001$ naringin/g extract and $2.0{\pm}0.008$ mg naringin/g extract dry basis, respectively. The amounts of the total polyphenols as gallic acid equivalents were $2.8{\pm}0.01$ mg gallic acid/g dry basis and $6.3{\pm}0.03$ mg gallic acid/g dry basis, respectively. 1,2-Diphenyi-1-picrylhydrazyl (DPPH) radical-scavenging activity of the dietary fiber from stalks was 2.4 times higher than that of the dietary fiber from tubers. Interestingly, a strong growth inhibition on HT-29 cells was observed in both dietary fibers originated from stalks and tubers of sweet potato in a dose-dependent manner. In addition, we found that the dietary fiber from tubers and stalks of sweet potato increased the gene expression of tumor suppressor p53. The great potential value in the prevention of various diseases including cancer the potential value could be confirmed through effects of the dietary fiber from tubers and stalks of sweet potato on antioxidant activity and anticancer in human colon cancer.

본 연구에서는 국내 고구마 괴근과 잎자루로부터 분리한 식이섬유의 총 폴리페놀, 플라보노이드의 양을 측정하고, 이들로 인한 항산화 효과와 HT-29 대장암 세포에서의 증식억제를 통한 항암 효과를 확인하였다. 고구마 잎자루와 괴근 식이섬유의 총 플라보노이드 함량은 각각 $0.5{\pm}0.001$ mg naringin/g dry basis와 $2.0{\pm}0.008$ mg naringin/g dry basis 이었고, 총 폴리페놀 함량은 각각 $2.8{\pm}0.01$ mg gallic acid/g dry basis와 $6.3{\pm}0.03$ mg gallic acid/g dry basis이었다. DPPH 라디칼 소거능 측정에서 잎자루 식이섬유가 괴근 식이섬유에 비해 2.4배 높게 나타남을 확인할 수 있었다. 대장암 세포주의 세포사멸효과를 측정한 결과, 두 경우 모두 식이섬유 첨가량에 대해서 농도의존적 세포 증식 억제를 보여주었다. 또한 잎자루와 괴근 식이섬유는 종양억제 p53 유전자 발현을 증가시키는 것으로 확인되었다. 이에 고구마 괴근과 잎자루로부터 분리한 식이섬유의 항산화 및 대장암에서의 항암 효과를 통해 암을 비롯한 다양한 질병의 예방에 있어 잠재적인 가치를 확인할 수 있었다.

Keywords

References

  1. A. Jemal, T. Murray, A. Samuels, A. Ghafoor, E. Ward, and M. J. Thun, Cancer statistics, 2003, CA. Cancer J. Clin., 53, 5 (2003). https://doi.org/10.3322/canjclin.53.1.5
  2. J. Laurier, Alarming increase in cancer rates, WHO report, 21, 2 (2006).
  3. B. W. Stewart and P. Kleihues, WHO internationalagency for research on cancer, World cancer report, Lyon, 352 (2003).
  4. P. Boyle and J. Ferlay, Cancer incidence and mortality in Europe, 2004, Ann. Oncol., 16, 481 (2005). https://doi.org/10.1093/annonc/mdi098
  5. Y. S. Yoon, C. S.Yu, S. H. Jung, P. W. Choi, K. R. Han, H. C. Kim, and J. C. Kim, Characteristics of colorectal cancer detected at the health promotion center, J. Korean Soc. Coloproctol., 23, 321 (2007). https://doi.org/10.3393/jksc.2007.23.5.321
  6. Y. Surh, Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances, Mutat Res., 428, 305 (1999). https://doi.org/10.1016/S1383-5742(99)00057-5
  7. M. Banerjee, P. Singh, and D. Panda, Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpointand induces apoptosis in MCF-7 cells, FEBS J., 277, 3437 (2010).
  8. J. A. Woolfe, Sweetpotato; an untapped food resource, Cambridge University Press, 142, Cambridge, UK (1992).
  9. M. Yoshimoto, O. Yamakawa, and H. Tanoue, Potential chemopreventiveproperties and varietal difference of dietary fiber from sweetpotato (Ipomoeabatatas L.) Root, JARQ, 39, 37 (2005).
  10. N. N. Reddy and W. A. Sistrunk, Effect of cultivar, size, storage, and cooking method on carbohydrates and some nutrients of sweet potatoes, J. Food Sci., 45, 682 (1980). https://doi.org/10.1111/j.1365-2621.1980.tb04131.x
  11. M. Yoshimoto, S. Okuno, R. Yamakawa, H. Tanoue, and H. Sibata, Adsorption of carcinogen by steet potato fiber and the antibacterial activity, Sougou Nougyou., 1998, 92 (1999).
  12. S. W. Lowe, H. E. Ruley, T. Jacks, and D. E. Housman, p53-dependent apoptosis modulates the cytotoxicity of anticancer agents, Cell, 74, 957 (1993a). https://doi.org/10.1016/0092-8674(93)90719-7
  13. M. Schuler and D. R. Green, Mechanisms of p53-dependent apoptosis, Biochem. Soc. Trans., 29, 684 (2001). https://doi.org/10.1042/BST0290684
  14. A. Gradilone, P. Gazzaniga, D. Ribuffo, S. Scarpa, E. Cigna, F. Vasaturo, U. Bottoni, D. Innocenzi, S. Calvieri, N. Scuderi, L. Frati, and A. M. Aglianò, Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients, J. Clin. Oncol., 21, 306 (2003). https://doi.org/10.1200/JCO.2003.08.066
  15. G. Ambrosini, C. Adida, and D. C. Altieri, A novel anti-apoptosis gene, surviving, expressed in cancer and lymphoma, Nature Med., 3, 917 (1997). https://doi.org/10.1038/nm0897-917
  16. C. C. Chang, M. H. Yang, H. M. Wen, and J. C. Chen, Estimation of total flavonoid content in propolis by two complementary colorimetric methods, J. Food Drug Anal., 10, 178 (2002).
  17. V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Viticult, 16, 144 (1965).
  18. M. G. Hertog, P. C. Hollman, M. B. Katan, and D. Kromhout, Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands, Nutr. Cancer, 20, 21 (1993). https://doi.org/10.1080/01635589309514267
  19. J. S. Carew and P. Huang, Mitochondrial defects in cancer, Mol. Cancer, 1, 1 (2002). https://doi.org/10.1186/1476-4598-1-1
  20. M. J. Ryu and H. S. Chung, Effects on hot water extract of Schizandrachinensison colon cancer cell line, Food Eng. Prog., 15, 64 (2012).
  21. B. Vogelstein, D. Lane, and A. J. Levine, Surfing the p53 network, Nature, 408, 307 (2000). https://doi.org/10.1038/35042675
  22. E. C. L. Casse, S. Baird, R. G. Korneluk, and A. E. Mackenzie, The inhibitors of apoptosis (IAPs) and their emerging role in cancer, Oncogene, 17, 3247 (1998).