Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma

수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거

  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Sang Baek (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 조진오 (제주대학교 생명화학공학과) ;
  • 이상백 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Published : 2013.10.31

Abstract

This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

본 연구에서는 소수성 다공질 세라믹관이 결합된 수중 유전체장벽방전 플라즈마 반응기를 이용하여 모사 염색폐수의 색도저감을 조사하였다. 플라즈마에 의해 생성되는 활성성분들은 수명이 매우 짧으므로 생성되는 즉시 물과 접촉시켜야 효과적인 폐수처리가 가능하며, 또한 반응속도를 증가시키기 위해서는 기/액 접촉면적이 커야 하는데, 본 연구의 반응기는 두 가지 목적을 동시에 이룰 수 있다. 아조 염료로는 amaranth, 그리고 플라즈마 생성을 위한 기체로는 공기가 사용되었으며, 방전전력, 기체 유량, 용존 음이온, 염료 초기농도 등 색도 제거에 미치는 다양한 변수의 영향이 평가되었다. 기체유량이 $1.5Lmin^{-1}$일 때, 플라즈마 기체가 염색폐수와 가장 효과적으로 접촉하였으며, 색도 제거가 가장 빠르게 일어났다. 염료 초기농도 $40.2{\mu}molL^{-1}$ (폐수부피 : 0.8 L), 방전전력 3.37 W의 조건에서 색도를 99% 이상 제거하는데 약 25 min이 소요되었다. 그밖에 염료의 초기농도가 낮을수록, 방전전력이 높을수록 색도 제거 속도가 증가하는 것으로 나타났다. 염소이온이 존재할 경우 색도 제거 속도가 빨라졌으나, 질산이온은 색도 제거 속도에 영향을 주지 않았다.

Keywords

References

  1. C. H. Wu, C. L. Chang, and C. Y. Kuo, Decolorization of amaranth by advanced oxidation processes, React. Kinet. Catal. Lett., 86, 37 (2005). https://doi.org/10.1007/s11144-005-0292-4
  2. Y. S. Mok, J. O. Jo, and J. C. Whitehead, Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water, Chem. Eng. J., 142, 56 (2008). https://doi.org/10.1016/j.cej.2007.11.012
  3. B. P. Dojcinovic, G. M. Roglic, B. M. Obradovic, M. M. Kuraica, M. M. Kostic, J. Nesic, and D. D. Manojlovic, Decolorization of reactive textile dyes using water falling film dielectric barrier discharge, J. Hazard. Mater., 192, 763 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.086
  4. C. Tizaoui and N. Grima, Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution, Chem. Eng. J., 173, 463 (2011). https://doi.org/10.1016/j.cej.2011.08.014
  5. H. P. Shivaraju, K. Byrappa, M. B. Shayan, T. Rungnapa, S. Pakamard, V. Kumar, and S. Ananda, Hydrothermal coating of ZnO onto calcium alumino silicate beads and their application in photodegradation of amaranth dye, Mater. Res. Innov., 14, 73 (2010). https://doi.org/10.1179/143307510X12599329343367
  6. A. C. Serra, C. Docal, and A. M. d'A. R. Gonsalves, Efficient azo dye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts, J. Mol. Catal. A-Chem., 238, 192 (2005). https://doi.org/10.1016/j.molcata.2005.05.017
  7. R. Zhang, C. Zhang, X. X. Cheng, L. Wang, Y. Wu, and Z. Guan, Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor, J. Hazard. Mater., 142, 105 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.071
  8. U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Proc., 23, 1 (2003). https://doi.org/10.1023/A:1022470901385
  9. C. Wang, G. Zhang, X. Wang, and X. He, The effect of air plasma on barrier dielectric surface in dielectric barrier discharge, Appl. Surf. Sci., 257, 1698 (2010). https://doi.org/10.1016/j.apsusc.2010.08.125
  10. D. I. Jang, T. H. Lim, S. B. Lee, Y. S. Lee, and H. Park, Decomposition of ethylene by using dielectric barrier discharge plasma, Appl. Chem. Eng., 23, 608 (2012).
  11. B. Jiang, J. Zheng, Q. Liu, and M. Wu, Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system, Chem. Eng. J., 204, 32 (2012).
  12. M. Tichonovas, E. Krugly, V. Racys, R. Hippler, V. Kauneliene, I. Stasiulaitiene, and D. Martuzevicius, Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment, Chem. Eng. J., 229, 9 (2013). https://doi.org/10.1016/j.cej.2013.05.095
  13. P. M. K. Reddy, B. R. Raju, J. Karuppiah, E. L. Reddy, and C. Subrahmanyam, Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor, Chem. Eng. J., 217, 41 (2013). https://doi.org/10.1016/j.cej.2012.11.116
  14. W. Zhao, W. Shi, and D. Wang, Ozonation of Cationic Red X-GRL in aqueous solution: degradation and mechanism, Chemosphere, 57, 1189 (2004). https://doi.org/10.1016/j.chemosphere.2004.08.014
  15. A. Demirev and V. Nenov, Ozonation of two acidic azo dyes with different substituents, Ozone: Sci. Eng., 27, 475 (2005). https://doi.org/10.1080/01919510500351834
  16. A. V. Levanov, I. V. Kuskov, A. V. Zosimov, E. E. Antipenko, and V. V. Lunin, Acid catalysis in reaction of ozone with chloride ions, Kinet Catal., 6, 740 (2003).
  17. J. S. Nicoson, L. Wang, R. H. Becker, K. E. H. Hartz, C. E. Muller, and D. W. Margerum, Kinetics and mechanisms of the ozone/bromite and ozone/chlorite reactions, Inorg. Chem., 41, 2975 (2002). https://doi.org/10.1021/ic011301s
  18. C. M. Sharpless, D. A. Seibold, and K. G. Linden, Nitrate photosensitized degradation of atrazine during UV water treatment, Aquat. Sci., 65, 359 (2003). https://doi.org/10.1007/s00027-003-0674-5