DOI QR코드

DOI QR Code

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps

방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석

  • Lee, Jae Su (Department of Bioindustrial Precision Machinery Engineering, Graduate School, Chonbuk National University) ;
  • Nam, Sang Woon (Department of Agricultural & Rural Engineering, Chungnam National University) ;
  • Kim, Yong Hyeon (Department of Bioindustrial Machinery Engineering, Chonbuk National University(The Institute of Agricultural Science & Technology))
  • 이재수 (전북대학교 대학원 생물산업정밀기계공학과) ;
  • 남상운 (충남대학교 지역환경토목학과) ;
  • 김용현 (전북대학교 생물산업기계공학과(농업과학기술연구소))
  • Received : 2013.10.29
  • Accepted : 2013.11.13
  • Published : 2013.12.31

Abstract

This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

본 연구는 식물공장용으로 방전램프로서 메탈할라이드램프(MH), 고압나트륨램프(HPS), 제논램프(XE)를 사용하고, 냉백색형광등(FL)을 대조구로 사용한 가운데 상추(Lactuca sativa L. cv. Jeokchima)의 생육 및 파이토케미컬의 특성을 분석하고자 수행되었다. 식물공장 내부의 환경조건은 광주기 16/8h, 광합성유효광양자속(photosynthetic photon flux, PPF) $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 기온 $22/18^{\circ}C$, 습도 70%, $CO_2$ 농도 $400{\mu}mol{\cdot}mol^{-1}$로 조절하였다. 각 램프의 분광 특성을 이용하여 PPF에 대한 청색광 영역(400~500nm), 녹색광 영역(500~600nm), 적색광 영역(600~700nm)의 비율을 계산하였다. MH램프의 청색광 영역은 23.0%로서 다른 처리구에 비해서 가장 높게 나타났다. 한편 HPS램프의 청색광 영역은 4.7%로서 가장 낮게 나타났으나, 적색광 영역은 38.0%로서 다른 처리구에 비해서 높게 나타났다. 정식 후 11일째와 21일째에 측정된 상추의 엽장, 엽폭, 엽면적, 지상부 생체중 및 건물중은 방전램프의 광질에 따른 유의차가 나타날 정도로 다르게 나타났다. HPS 처리구의 엽면적은 $143,486mm^2$로서 대조구의 $98,474mm^2$에 비해서 45.7% 크게 나타났으며, MH와 XE 처리구는 대조구에 비해서 각각 16.3%, 9.5%로 크게 나타났다. 이러한 결과는 지상부 생체중에서도 유사하게 나타났다. 적색광 영역의 비율이 높은 HPS 처리구에서는 상추의 잎 관련 생장 특성에서 최대치가 나타났으나, 청색광 영역의 비율이 높은 MH와 XE 처리구에서는 낮게 나타났다. 방전등 처리구에 따라 상추 잎에 축적된 아스코르빈산 함량은 대조구에 비해서 작게 나타났으며, 처리구 사이에 유의차가 인정되지 않았다. 상추 잎의 안토시아닌 함량은 MH 처리구에서 0.70mg/100g으로 최대치가 나타났으며, XE와 HPS 처리구는 대조구의 0.58mg/100g에 비해서 각각 79.3%, 8.6%수준이었다. 결과적으로 방전램프의 종류에 따라 상추의 생장 특성, 아스코르빈산 및 안토시아닌 함량이 다르게 나타났다. 따라서 식물공장용 인공광원으로서 방전램프를 효율적으로 활용하면서, 상추의 생장 및 파이토케미컬 함량을 증진시키기 위해서는 분광 특성이 상이한 방전램프의 병용 또는 단색광 LED의 추가 설치 등과 같은 방전램프의 광질 개선이 요구된다.

Keywords

References

  1. Barta, D.J., T.W. Tibbitts, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diode characteristics for space-based plant irradiation source. Adv. Space Res. 12:141-149.
  2. Cho, Y.R., D.W. Han, and Y.B. Lee. 1998. Effect of artificial light sources on the growth of crisphead lettuce in plant factory. J. Bio. Fac. Env. 7(1):35-42 (in Korean).
  3. Giliberto, L., G. Perrotta, P. Pallara, J.L. Weller, P.D. Fraser, P.M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137:199-208. https://doi.org/10.1104/pp.104.051987
  4. Goto, E. 2003. Effects of light quality on growth of crop plants under artificial lighting. Environ. Control in Biol. 41(2):121-132. https://doi.org/10.2525/ecb1963.41.121
  5. Henry, B.S., G.F.A. Hendry, and J.D. Hougton. 1992. Natural food color. In National Food Colorants, Blackie and Son Ltd, Glasgo p. 39.
  6. Kim, I.S., C. Zhang, H.M. Kang, and B. Mackay. 2008. Control of stretching of cucumber and tomato plug seedlings using supplemental light. Hort. Environ. Biotechnol. 49: 287-292.
  7. Kim, Y.H. 1999. Plant growth and morphogenesis control in transplant production system using light-emitting diodes (LEDs) as artificial light source -Spectral characteristics and light intensity of LEDs. J. Kor. Soc. Agric. Mach. 24(2): 115-122 (in Korean).
  8. Kim, Y.H. and C.H. Lee. 1998. Light intensity and spectral characteristics of fluorescent lamps as artificial light source for close illumination in transplant production factory. J. Kor. Soc. Agric. Mach. 23(6):591-598 (in Korean).
  9. Kim, Y.H. and J.S. Lee. 2012. Growth and phytochemicals of lettuce (Lactuca sativa L.) as affected by light quality and photoperiod of LED lamps. Kor. J. Hort. Sci. Technol. 30(Suppl. I):85-86 (in Korean).
  10. Lee, H.I., J.S. Lee, J.H. Park, and Y.H. Kim. 2011. Growth and light utilization efficiency of lettuce as affected by different artificial lighting sources and photoperiod. Proceedings of the Kor. Soc. Bio-Environ. Con. 20(1):120-121 (in Korean).
  11. MFDS. 2011. Food Code.
  12. Ninu, L., M. Ahmad, C. Miarelli, A.R. Cashmore, and G. Giuliano. 1999. Cryptochrome 1 controls tomato development in response to blue light. Plant J. 18:551-556. https://doi.org/10.1046/j.1365-313X.1999.00466.x
  13. Nishioka, N., T. Nishimura, K. Ohyama, M. Sumino, S.H. Malayeri, E. Goto, N. Inagaki, and T. Morota. 2008. Light quality affected growth and contents of essential oil components of Japanese mint plants. Acta Hort. 797:431-436.
  14. Nishimura, T., S.M.A. Zobayed, T. Kozai, and E. Goto. 2006. Effect of light quality of blue and red fluorescent lamps on growth of St. John's Wort (Hypericum perforatum L). J. SHITA 18(3):225-229. https://doi.org/10.2525/shita.18.225
  15. Nishimura, T., K. Ohyama, E. Goto, and N. Iangaki. 2009. Concentration of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hortic. 122:134-137. https://doi.org/10.1016/j.scienta.2009.03.010
  16. Noh, B. and E. Spalding. 1998. Anion channels and the stimulation of anthocyanin accumulation by blue light in arabidopsis seedlings. Plant Physiology 116:503-509. https://doi.org/10.1104/pp.116.2.503
  17. Ohyama, K., K. Mannabe, Y. Omura, and T. Kozai. 2005. Potential use of a 24 h (continuous light) with alternating air temperature for production of tomato plug transplants in a closed system. HortSci. 40:374-377.
  18. Oh, M.M., E.C. Edward, and C.B. Rajashekar. 2009. Environmental stresses induce health promoting phytochemicals in lettuce. Plant Physiol. Biochem. 47:578-583. https://doi.org/10.1016/j.plaphy.2009.02.008
  19. Park, J.E., Y.G. Park, B.R. Jeong, and S.J. Hwang. 2012. Growth and anthocyanin content of lettuce as affected by artificial light source and photoperiod in a closed-type plant production system. Kor. J. Hort. Sci. Technol. 30(6):673*679 (in Korean).
  20. Park, K.W., Y.J. Shin, and Y.B. Lee. 1992. Studies on the modeling of controlled environment in leaf vegetable crops (II. Effects of various light sources on the growth). J. Bio. Fac. Env. 1(2):135-141 (in Korean).
  21. Perez-Balibrea, S., D.A. Moreno, and C. Garia-Viquera. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J. Sci. Food Agric. 88:904-910. https://doi.org/10.1002/jsfa.3169
  22. Rajapakse, N.C. and J.W. Kelly. 1992. Regulation of chrysanthemum growth by spectral filters. J. Amer. Soc. Hort. Sci. 117:481-485.
  23. Um, Y.C., S.S. Oh, J.G. Lee, S.Y. Kim, and Y.A. Jang. 2010. The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J. Bio-Environ. Con. 19(4):333-342 (in Korean).
  24. Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light emitting diodes (LEDs) with blue light supplementation. HortSci. 36(2):380-383.