DOI QR코드

DOI QR Code

Practical Considerations in Preparing an Institutional Procedure of Image Guided Radiation Therapy

방사선 치료용 영상 장치 지침서 작성을 위한 실용적인 고려사항

  • Yi, Byong Yong (Department of Radiation Oncology, University of Maryland School of Medicine)
  • Received : 2013.09.13
  • Accepted : 2013.12.17
  • Published : 2013.12.31

Abstract

Recent developments of image guided radiation therapy (IGRT), especially the On Board Imaging (OBI) system and the cone beam CT (CBCT), enable the radiation treatment more accurate and reliable. IGRT is widely used in the radiation therapy as a standard of care. Use of IGRT is even expected to increase in the near future. IGRT is only beneficial to patients when it is used with proper considerations of safety and appropriateness of the techniques. Institutional procedure should be developed based on the clinical need and the deep understanding of the system before applying the new technique to the clinic. Comprehensive QA program should be established before to the clinic and imaging dose should be considered when preparing the departmental practice guidelines for IGRT.

Cone Beam CT (CBCT)와 On Board Imaging (OBI)를 비롯하여 최근에 개발되고 있는 방사선 치료용 영상 장치(Image Guided Radiation Therapy, IGRT)의 사용으로 방사선 치료가 더욱 정확해지고 있다. 점차 사용 범위가 넓어지면서 표준치료법으로 자리잡았고 앞으로 사용하는 기관과 빈도가 더 늘어날 것으로 전망한다. IGRT는 그러나 안전하고 용도에 맞게 사용할 때만 효능을 볼 수 있다. 이를 위해 IGRT를 임상에 적용하기 전에 장치의 특성을 이해하고 병원의 임상 요구에 적합한 지침서를 미리 만들 필요가 있다. QA 프로그램과 환자가 받을 추가 선량에 대한 고려도 미리 준비해둘 필요가 있다.

Keywords

References

  1. Bissonnette JP, Balter PA, Dong L, et al: Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys 39(4):1946-1963 (2012) https://doi.org/10.1118/1.3690466
  2. Simpson DR, Lawson JL, Nath SK, et al: A survey of image-guided radiaton therapy use in United States. Cancer 116 (16):3953-3960 (2010) https://doi.org/10.1002/cncr.25129
  3. Lam KS, Partowmah M, Lam WC: An on-line electronic portal imaging system for external beam radiotherapy. Br J Radiol 59:1007-1013 (1986) https://doi.org/10.1259/0007-1285-59-706-1007
  4. Adler JR Jr, Murphy MJ, Chang SD, Hancock SL: Image-guided robotic radiosurgery. Neurosurgery 44(6):1299-1306 (1999)
  5. Sorcini B, Tilikidis A. Clinical application of image-guided radiotherapy (IGRT) on the Varian OBI platform. Cancer Radiother 10(5):252-257 (2006) https://doi.org/10.1016/j.canrad.2006.05.012
  6. Mosleh-Shirazi MA, Evans PM, Swindell W, Webb S, Partridge M: A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy. Radiother Oncol 48(3):319-328 (1998) https://doi.org/10.1016/S0167-8140(98)00042-5
  7. Pouliot J, Bani-Hashemi A, Chen J, et al: Low-dose mega- voltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 61(2):552-560 (2005) https://doi.org/10.1016/j.ijrobp.2004.10.011
  8. Yin FF, Wong J, Balter J, et al: The Role of In-room kV x-ray Imaging for Patient Setup and Target Localization: Report of AAPM Task Group 104, in AAPM Report, American Association of Physicists in Medicine, College Park, MD (2009).
  9. Guckenberger M, Meyer J, Wilbet J, et al: Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors. Acta Oncologica 45(7):897-906 (2009)
  10. Li H, Zhu XR, Zhang L, et al: Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiaotherapy patients. Int J Radiat Oncol Biol Phys 71(3):916-925 (2008) https://doi.org/10.1016/j.ijrobp.2008.01.008
  11. Boda-Heggemann J, Lohr F, Wenz F, Flentje M, Guckenberger M: kV Cone-Beam CT-based IGRT: A clinical Review. Strahlentherapie und Onkologie 187(5):284-291 (2011)
  12. Morr J, DiPetrillo T, Tsai JS, Engler M, Wazer DE: Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 53(5):1124-1129 (2002) https://doi.org/10.1016/S0360-3016(02)02820-1
  13. Chandra A, Dong L, Huang E, et al: Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys 56(2):436-447 (2003) https://doi.org/10.1016/S0360-3016(02)04612-6
  14. Langen KM, Pouliot J, Anezinos C, et al: Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 57(3):635-644 (2003) https://doi.org/10.1016/S0360-3016(03)00633-3
  15. Park YK, Son T, Kim H, et al: Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy. JACMP 14(5):25-42 (2013)
  16. Greco C, Ling CC: Broadening the scope of Image-Guided Radiotherapy (IGRT). Acta Oncologica 47(7):1193-1120 (2008) https://doi.org/10.1080/02841860802241956
  17. Benedict SH, Yenice KM, Followill D, et al: Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys 37(8):4078-4101 (2010) https://doi.org/10.1118/1.3438081
  18. Lamba M, Breneman JC, Warnick RE: Evaluation of image-guided positioning for frameless intracranial radiosurgery. Int J Radiat Oncol Biol Phys 74(3):913-919 (2009) https://doi.org/10.1016/j.ijrobp.2009.01.008
  19. Lerma F, Liu B, Yi B, Amin P, Yu C: Role of image-guided patient repositioning and online planning in localized prostate cancer IMRT. Radiotherapy and Oncology 93(1):18-24 (2009) https://doi.org/10.1016/j.radonc.2009.06.011
  20. Yi B, Lerma F, Suntharalingam M: Is weekly megavoltage image verification necessary after daily kv image guidance? Int J Radiat Oncol Biol Phys 72(1):S571-S572 (2008)
  21. Yoo S, Kim GY, Hammoud R, et al: A quality assurance program for the on-board imagers. Med Phys 33(11):4431-4447 (2006) https://doi.org/10.1118/1.2362872
  22. Klein EE, Hanley J, Bayouth J, et al: Task group 142 report: Quality assurance of medical accelerators. Med Phys 36(9):4197-4212 (2009) https://doi.org/10.1118/1.3190392
  23. Varian Customer Technical Bulletin, CTB-PV-457a, May 11, 2006.
  24. Underberg RWM, Lagerwaald FJ, Slotman BJ, Cuijpers JP, Senan S: Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys 63(1):253-260 (2005) https://doi.org/10.1016/j.ijrobp.2005.05.045
  25. Muirhead R, McNee SG, Featherstone C, Muscat S: Use of maximum intensity projections (MIPs) for target outlining in 4DCT radiotherapy planning. J Thorac Oncol 3(12):1433-1438 (2008) https://doi.org/10.1097/JTO.0b013e31818e5db7
  26. Park KW, Huang L, Gagne H, Papiez L: Do maximum intensity projection images truly capture tumor motion? Int J Radiat Oncol Biol Phys 73(2):618-625 (2009) https://doi.org/10.1016/j.ijrobp.2008.10.008
  27. Vergalasova I, Maurer J, Yin FF: Potential underestimation of the internal target volume (ITV) from free-breathing CBCT. Med Phys 38(8):4689-4699 (2011) https://doi.org/10.1118/1.3613153
  28. Wen N, Guan H, Hammond R, et al: Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer. Phys Med Biol 52(8):2267-2276 (2007) https://doi.org/10.1088/0031-9155/52/8/015
  29. Ding GX, Coffey CW: Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(1):610-617 (2009) https://doi.org/10.1016/j.ijrobp.2008.10.006
  30. Ding GX, Coffey CW: Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(1):610-617 (2009) https://doi.org/10.1016/j.ijrobp.2008.10.006
  31. Ding GX, Coffey CW: Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(1):610-617 (2009) https://doi.org/10.1016/j.ijrobp.2008.10.006
  32. Ding GX, Coffey CW: Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73(1):610-617 (2009) https://doi.org/10.1016/j.ijrobp.2008.10.006
  33. Lee H, Xing L, Lee R, Fahimianb BP: Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information. Med Phys 39(5):2386-2395 (2012) https://doi.org/10.1118/1.3691901