DOI QR코드

DOI QR Code

Estimation of Secondary Scattered Dose from Intensity-modulated Radiotherapy for Liver Cancer Cases

간암환자에 대한 세기조절방사선치료에서의 2차 산란선량평가

  • Kim, Dong Wook (Department of Radiation Oncology, Kyung Hee University Hospital at Gandong) ;
  • Sung, Jiwon (Department of Bio-convergence Engineering, Korea University) ;
  • Lee, Hyunho (Department of Bio-convergence Engineering, Korea University) ;
  • Yoon, Myonggeun (Department of Bio-convergence Engineering, Korea University) ;
  • Chung, Weon Kuu (Department of Radiation Oncology, Kyung Hee University Hospital at Gandong) ;
  • Bae, Sun Hyun (Department of Radiation Oncology, Kyung Hee University Hospital at Gandong) ;
  • Shin, Dong Oh (Department of Radiation Oncology, Kyung Hee University Medical Center) ;
  • Chung, Kwangzoo (Department of Radiation Oncology, Samsung Medical Center) ;
  • Lim, Young Kyung (Proton Therapy Center, National Cancer Center) ;
  • Shin, Donho (Proton Therapy Center, National Cancer Center) ;
  • Lee, Se Byeong (Proton Therapy Center, National Cancer Center)
  • 김동욱 (강동경희대학교병원 방사선종양학과) ;
  • 성지원 (고려대학교 바이오융합공학과) ;
  • 이현호 (고려대학교 바이오융합공학과) ;
  • 윤명근 (고려대학교 바이오융합공학과) ;
  • 정원규 (강동경희대학교병원 방사선종양학과) ;
  • 배선현 (강동경희대학교병원 방사선종양학과) ;
  • 신동오 (경희대학교병원 방사선종양학과) ;
  • 정광주 (삼성의료원 방사선종양학과) ;
  • 임영경 (국립암센터 양성자치료센터) ;
  • 신동호 (국립암센터 양성자치료센터) ;
  • 이세병 (국립암센터 양성자치료센터)
  • Received : 2013.12.06
  • Accepted : 2013.12.16
  • Published : 2013.12.31

Abstract

We estimated secondary scattered and leakage doses for intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with liver cancer. Five liver patients were planned by IMRT, VMAT and TOMO. Secondary scatter (and leakage) dose and organ equivalent doses (OEDs) are measured and estimated at various points 20 to 80 cm from the iso-center by using radiophotoluminescence glass dosimeter (RPLGD). The secondary dose per Gy from IMRT, VMAT and TOMO for liver cancer, measured 20 to 80 cm from the iso-center, are 0.01~3.13, 0.03~2.34 and 0.04~1.29 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO for five patients, which is normalized by IMRT, measured as 75.24% and 50.92% for thyroid, 75.14% and 40.61% for bowel, 72.30% and 47.77% for rectum, 76.21% and 49.93% for prostate. The secondary dose and OED from TOMO is relatively low to those from IMRT and VMAT. OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT.

간암 환자에 대한 세기조절방사선치료(IMRT, intensity modulated radiotherapy) 및 세기조절회전방사선치료(VMAT, volumetric arc therapy)와 나선식토모치료(TOMO, Helical Tomotherapy)에서 2차 암의 원인이 될 수 있는 산란 및 누출선량률을 평가하였다. 5명의 간암 환자에 대해 IMRT와 VMAT, TOMO 치료계획을 실시하여 등중심(iso-center)으로부터 20, 40, 60, 80 cm 위치에서 유리선량계(RPLGD, radiophotoluminescence glass dosimeter)를 이용하여 선량을 측정하였다. 계획표적체적(Planning Target Volume, PTV)에 조사된 단위 선량(Gy)당 측정된 산란 및 누출선량은 IMRT의 경우, 최소 0.01에서 최대 3.13 Gy로 측정 되었고 VMAT에 대해서는 최소 0.03에서 최대 2.35 Gy까지, TOMO에 대해서는 최소 0.04에서 최대 1.30 Gy 까지 측정 되었다. 각 치료법에 대한 평균장기등가선량은 세기조절방사선치료에 대해 세기조절회전방사선 치료와 나선식단층토모치료가 각각 갑상선에서 75%와 51%, 대장에서 75%와 41%, 직장에서 72%와 48%, 전립선에서 76%와 50%로 나왔다. 본 측정을 통하여 산란 및 누출선량은 치료 중심으로부터의 거리에 따라 감소함을 보았으며 TOMO 치료의 경우, 환자치료를 위해 사용하는 모니터단위(MU, monitor unit)가 타 치료법에 비해 상대적으로 큼에도 불구하고 산란 및 누출선량은 크지 않는 것으로 평가되었다.

Keywords

References

  1. 국가암정보센터: 암발생률 추세 분석, http://www.cancer.go.kr
  2. 국가암정보센터: 성별 10대암 조발생률 2010, http://www.cancer.go.kr
  3. Lau WY, Lai EC: Hepatocellular carcinoma: current management and recent advances. Hepatobiliary & pancreatic diseases international: HBPD INT 7(3):237-257 (2008)
  4. Lencioni RA, Allgaier HP, Cioni D, et al: Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology 228(1):235-240 (2003) https://doi.org/10.1148/radiol.2281020718
  5. Lin SM, Lin CJ, Lin CC, et al: Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma < or =4 cm. Gastroenterology 127(6):1714-1723 (2004) https://doi.org/10.1053/j.gastro.2004.09.003
  6. Cheng JC, Chuang VP, Cheng SH, et al: Local radiotherapy with or without transcatheter arterial chemoembolization for patients with unresectable hepatocellular carcinoma. International journal of radiation oncology, biology, physics 47(2):435-442 (2000) https://doi.org/10.1016/S0360-3016(00)00462-4
  7. Hawkins MA, Dawson LA: Radiation therapy for hepatocellular carcinoma: from palliation to cure. Cancer 106(8):1653-1663 (2006) https://doi.org/10.1002/cncr.21811
  8. Llovet JM, Bruix J: Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 37(2):429-442 (2003) https://doi.org/10.1053/jhep.2003.50047
  9. Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology, Biology, Physics 21(1):109-122 (1991)
  10. Liu MT, Li SH, Chu TC, et al: Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization. Japanese Journal of Clinical Oncology 34(9):532-539 (2004) https://doi.org/10.1093/jjco/hyh089
  11. Giraud P, De Rycke Y, Dubray B, et al: Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. International Journal of Radiation Oncology, Biology, Physics 51(4):1081-1092 (2001) https://doi.org/10.1016/S0360-3016(01)01766-7
  12. Fiveash JB, Hanks G, Roach M, et al: 3D conformal radiation therapy (3DCRT) for high grade prostate cancer: a multi-institutional review. International Journal of Radiation Oncology, Biology, Physics 47(2):335-342 (2000) https://doi.org/10.1016/S0360-3016(00)00441-7
  13. Hoskin PJ: Advances in IMRT: a clinical perspective. The Lancet Oncology 1:74 (2000) https://doi.org/10.1016/S1470-2045(00)00074-7
  14. Low DA, Mutic S: A commercial IMRT treatment-planning dose-calculation algorithm. International Journal of Radiation Oncology Biology Physics 41(4):933-937 (1998) https://doi.org/10.1016/S0360-3016(98)00129-1
  15. Teh BS, Woo SY, Butler EB: Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. The Oncologist 4(6):433-442 (1999)
  16. Vaarkamp J, Krasin M: Reduction of target dose inhomogeneity in IMRT treatment planning using biologic objective functions. International Journal of Radiation Oncology Biology Physics 49(5):1518-1520 (2001) https://doi.org/10.1016/S0360-3016(00)01538-8
  17. Ahamad A, Stevens CW, Smythe WR, et al: Promising early local control of malignant pleural mesothelioma following postoperative intensity modulated radiotherapy (IMRT) to the chest. Cancer J 9(6):476-484 (2003) https://doi.org/10.1097/00130404-200311000-00008
  18. Wieland P, Dobler B, Mai S, et al: IMRT for postoperative treatment of gastric cancer: covering large target volumes in the upper abdomen: a comparison of a step-and-shoot and an arc therapy approach. International Journal of Radiation Oncology Biology Physics 59(4):1236-1244 (2004) https://doi.org/10.1016/j.ijrobp.2004.02.051
  19. Malhotra HK, Raina S, Avadhani JS, deBoer S, Podgorsak MB: Technical and dosimetric considerations in IMRT treatment planning for large target volumes. Journal of Applied Clinical Medical Physics/American College of Medical Physics 6(4):77-87 (2005) https://doi.org/10.1120/jacmp.2026.25360
  20. Brahme A, Roos JE, Lax I: Solution of an integral equation encountered in rotation therapy. Physics in Medicine and Biology 27(10):1221-1229 (1982) https://doi.org/10.1088/0031-9155/27/10/002
  21. Otto K: Volumetric modulated arc therapy: IMRT in a single gantry arc. Medical Physics 35(1):310-317 (2008) https://doi.org/10.1118/1.2818738
  22. Yu CX: Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Physics in Medicine and Biology 40(9):1435-1449 (1995) https://doi.org/10.1088/0031-9155/40/9/004
  23. Welsh JS, Patel RR, Ritter MA, Harari PM, Mackie TR, Mehta MP: Helical tomotherapy: an innovative technology and approach to radiation therapy. Technology in Cancer Research & Treatment 1(4):311-316 (2002) https://doi.org/10.1177/153303460200100413
  24. Mackie TR: History of tomotherapy. Physics in Medicine and Biology 51(13):R427-453 (2006) https://doi.org/10.1088/0031-9155/51/13/R24
  25. Cao D, Holmes TW, Afghan MK, Shepard DM: Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. International Journal of Radiation Oncology Biology Physics 69(1):240-250 (2007) https://doi.org/10.1016/j.ijrobp.2007.04.073
  26. Hall EJ, Wuu CS: Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology Biology Physics 56(1):83-88 (2003) https://doi.org/10.1016/S0360-3016(03)00073-7
  27. Kim S, Min BJ, Yoon M, et al: Secondary radiation doses of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology 98(3):335-339 (2011) https://doi.org/10.1016/j.radonc.2011.01.018
  28. Howell RM, Hertel NE, Wang Z, Hutchinson J, Fullerton GD: Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies. Medical Physics 33(2):360-368 (2006) https://doi.org/10.1118/1.2140119
  29. Corporation A: RPL Glass Dosimeter/Small Element System Dose Ace. (2000)
  30. Hsu SM, Yeh SH, Lin MS, Chen WL: Comparison on characteristics of radiophotoluminescent glass dosemeters and thermoluminescent dosemeters. Radiation Protection Dosimetry 119(1-4):327-331 (2006) https://doi.org/10.1093/rpd/nci510
  31. KIM DW, Chung W: Characteristic study of radiophotoluminescence glass rod detector for clinical usages: skin and inner body in-vivo verification. J of Korean Phys Soc 62(4):670-676 (2013) https://doi.org/10.3938/jkps.62.670
  32. Schneider U, Kaser-Hotz B: Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiation and Environmental Biophysics 44(3):235-239 (2005) https://doi.org/10.1007/s00411-005-0016-1
  33. Schneider U, Sumila M, Robotka J: Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theoretical Biology & Medical Modelling 8(1):27 (2011) https://doi.org/10.1186/1742-4682-8-27

Cited by

  1. Clinical assessment of the jaw-tracking function in IMRT for a brain tumor vol.66, pp.2, 2013, https://doi.org/10.3938/jkps.66.295
  2. 유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구 vol.26, pp.4, 2013, https://doi.org/10.14316/pmp.2015.26.4.241
  3. 방사선 치료 시 산란선 및 누설선에 의한 표면선량 분포에 관한 연구 vol.12, pp.3, 2013, https://doi.org/10.7742/jksr.2018.12.3.351