Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Water Back-flushing Period and Time

관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 물 역세척 주기와 시간의 영향

  • Park, Jin Yong (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Sung Woo (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Byun, Hongsik (Department of Chemical System Engineering, Keimyung University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 박성우 (한림대학교 환경생명공학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2013.08.01
  • Accepted : 2013.08.20
  • Published : 2013.08.30

Abstract

The effect of water back-flushing period (FT) and water back-flushing time (BT) was compared with the previous study of nitrogen back-flushing in viewpoints of resistance of membrane fouling ($R_f$), permeate flux (J), and total permeate volume ($V_T$) in hybrid process of tubular ceramic microfiltration and PES (polyethersulfone) beads loaded $TiO_2$ photocatalyst for advanced drinking water treatment. As FT decreasing, Rf decreased, but J and $V_T$ increased. Turdity treatment efficiency was the maximum at NBF (no back-flushing) and increased a little as FT decreasing in both water and nitrogen back-flushing. Organic matter treatment efficiency was the maximum at FT 4 min in water back-flushing, but increased as FT decreasing in nitrogen back-flushing. As BT increasing, Rf and resistance of reversible membrane fouling ($R_{rf}$) decreased, but J and $V_T$ increased. The turdity treatment efficiency was almost constant beyond 98% in water back-flushing, but increased as BT increasing except NBF in nitrogen. The organic matter treatment efficiency was the maximum at BT 6 sec in water back-flushing, but increased as BT increasing except NBF in nitrogen. The $V_T$ was the maximum at BT 30 and FT 2 min, and optimal condition was BT 30 sec per FT 2 min in this experimental range.

고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄($TiO_2$) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 역세척 주기(FT)와 역세척 시간(BT)의 영향을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총여과부피($V_T$) 측면에서 기존의 질소 역세척 결과와 비교하였다. FT가 짧아질수록 $R_f$는 감소하고 J와 $V_T$는 증가하였다. 탁도의 처리효율은 물과 질소역세척 모두 NBF (no back-flushing)에서 최대이고, FT가 짧아질수록 처리효율이 다소 증가하였다. 유기물질 처리효율은 물역세척 시 FT 4분에서 최대이었으나, 질소 역세척 시 FT가 짧아질수록 증가하였다. BT가 길어질수록 $R_f$와 가역적 막오염 저항($R_{rf}$)은 감소하고, J와 $V_T$는 증가하였다. 탁도 처리효율은 물 역세척 시 98% 이상으로 거의 일정하였으나, 질소 역세척 시 NBF를 제외하고 BT가 길어질수록 증가하였다. 유기물질 처리효율은 물 역세척시 BT 6초에서 최대이고, 질소 역세척 시 NBF를 제외하고 BT가 길어질수록 증가하였다. BT 30초와 FT 2분에서 최대 $V_T$값을 나타내어서, 본 실험 범위에서 최적 조건은 FT 2분마다 BT 30초이다.

Keywords

References

  1. H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $ TiO_2 $ photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted depositionmethod and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003).
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
  5. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  6. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  7. T. H. Bae and T. M. Tak, "Effect of$ TiO_2 $nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
  8. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  9. K. Azrague, E. Puech-costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  10. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst : 2. Effect of photo-oxidation and adsorption", Membrane Journal, 21, 201 (2011).
  11. I. R. Bellobono, B. Barni, and F. Gianturco, "Preindustrial experience in advanced oxidation and integral photodegradation of organics in potable wa ters and waste waters by PHOTHOPERMTM membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  12. R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, "Study on a photocatalytic membrane reactor for water purification", Catal. Today, 55, 71 (2000). https://doi.org/10.1016/S0920-5861(99)00227-8
  13. R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  14. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  15. J. Kleine, K. V. Peinemann, C. Schuster, and H. J. Warnecke, "Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002). https://doi.org/10.1016/S0009-2509(02)00043-X
  16. K. Karakulski, W. A. Morawski, J. Grzechulska, K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Separ. & Purification Technol., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  17. W. Xi and S. U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by crossflow microfiltration", Wat. Res., 35, 1256 (2001). https://doi.org/10.1016/S0043-1354(00)00378-X
  18. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  19. M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  20. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst : 1. Effect of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
  21. A. Figoli, G. De Luca, E. Longavita, and E. Drioli, "PEEKWC capsules prepared by phase inversion technique: a morphological and dimensional study", Sep. Sci. Tech., 42, 2809 (2007). https://doi.org/10.1080/01496390701558284
  22. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  23. J. Y. Park and S. H. Lee, "Effect of waterback- flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  24. H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
  25. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and O3/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  26. M. Cheryan, "Ultrafiltration Handbook", Technomic Pub. Co., Lancater, PA (1984).
  27. S. T. Hong and J. Y. Park, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of nitrogen backflushing period and time", Membrane Journal, 23, 70 (2013).