Preparation of Composite Membranes Via PVA/PAM Solution Coating onto Hydrophilized PVDF Hollow Fiber Membrane and Their Pervaporation Separation of Water-ethanol Mixture

PVDF 중공사막의 표면친수화 후 PVA/PAM 용액의 코팅을 통한 복합막제조와 이의 물-에탄올계의 투과증발 분리

  • 김지선 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 박채영 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 박헌휘 ((주)이엔이) ;
  • 서창희 ((주)이엔이) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화학공학과)
  • Received : 2013.08.01
  • Accepted : 2013.08.29
  • Published : 2013.08.30

Abstract

Poly vinylidene fluoride (PVDF) hollow fiber membranes were hydrophilized using polyethylenimine (PEI) and p-xylylene dichloride (XDC), and poly(vinyl alcohol) (PVA) and poly (acrylic acid -co- maleic acid) (PAM) mixed solutions by varying the concentration of PAM were coated onto PVDF membrane surface. The surface coating was verified by the observation of scanning electron microscope (SEM) and the permselective characteristcs of the resulting composite membranes were tested for 90 wt% aqueous ethanol solution by the pervaporation technique. The effects of the corsslinking agent concentraion, the temperature of feed solution, and the reaction temperature on the flux and separation factors were measured. Typically, the flux, $1,480g/m^2hr$ at the reaction temperature $100^{\circ}C$, PAM 3 wt%, feed temperature $70^{\circ}C$ was obtained, on the other hand, for the separation factor, ${\alpha}_{W/E}=82$ at the conditions of the reaction temperature $100^{\circ}C$, PAM 15 wt% and feed temperature $25^{\circ}C$ was shown.

Poly vinylidene fluoride (PVDF) 중공사막을 polyethylenimine (PEI)와 p-xylylene dichloride (XDC)를 이용해 친수화 시킨 후 poly(vinyl alcohol) (PVA)과 가교제인 poly(acrylic acid-co-maleic acid) (PAM) 혼합용액을 코팅하여 막을 제조하였다. 중공사막 표면의 코팅여부는 scanning electron microscope (SEM)을 통해 관찰하였으며, 막의 특성평가를 위해 물/에탄올 혼합액에 대한 투과증발 실험을 수행하였다. 공급액 조성은 90 wt% 에탄올 수용액을 사용하였으며, 가교제 농도, 공급액과 반응온도 변화에 따른 투과도 및 선택도를 측정하였다. 투과도는 반응온도 $100^{\circ}C$, PAM 농도 3 wt%, 공급액온도 $70^{\circ}C$에서 $1,480g/m^2hr$, 그리고 선택도는 반응온도 $100^{\circ}C$, PAM 농도 15 wt%, 공급액온도 $25^{\circ}C$에서 ${\alpha}_{W/E}=82$의 결과를 얻을 수 있었다.

Keywords

References

  1. A. Verhoef, A. Figoli, B. Leen, B. Bettens, E. Drioli, and B. Bruggen, "Performance of a Nanofiltration Membrane for Removal of Ethanol from Aqueous Solutions by Pervaporation", Sep. Purif. Tech., 60(1), 54-63 (2008). https://doi.org/10.1016/j.seppur.2007.07.044
  2. K. Sato, K. Sugimoto, and T. Nakane, "Synthesis of Industrial Scale NaY Zeolite Membranes and Ethanol Permeating Performance in Pervaporation and Vapor Permeation up to 130${^{\circ}C}$ and 570 kPa", J. Membr. Sci., 310(1-2), 161-173 (2008). https://doi.org/10.1016/j.memsci.2007.10.047
  3. L. M. Vane, V. V. Namboodiri, and T. C. Bowen, "Hydrophobic Zeolite-Silicone Rubber Mixed Matrix Membranes for Ethanol-Water Separation : Effect of Zeolite and Silicone Component Selection on Pervaporation Performance", J. Membr. Sci., 308(1-2), 230-241 (2008). https://doi.org/10.1016/j.memsci.2007.10.003
  4. H. Sun, L. Lu, X. Chen, and X. Jiang, "Pervaporation Dehydration of Aqueous Ethanol Solution Using H‐ZSM‐5 Filled Chitosan Membranes", Sep. Purif. Tech., 58(3), 429-436 (2008). https://doi.org/10.1016/j.seppur.2007.09.012
  5. L. Y. Jiang, T. Chung, and R. Rajagopalan, "Dehydration of Alcohols by Pervaporation Through Polyimide Matrimid${\circledR}$ Asymmetric Hollow Fibers with Various Modifications", Chem. Eng. Sci., 63(1), 204-216 (2008). https://doi.org/10.1016/j.ces.2007.09.026
  6. J. M. Won, B. H. Ha, and H. S. Choi. "Separation of Aqueous Ethanol Solution Using PAA-PAN Composite Membrane Through Pervaporation.", Membrane Journal, 6(3), 182-187 (1996).
  7. Y. M. Lee, S. Y. Nam, J. K. Yoo, and K. O. Yoo, "Dehydration of Alcohol Solutions Through Crosslinked Chitosan Composite Membranes III. Effect of Substrate, Neutralization and Active Layer Thickness on Pervaporation of Water/Ethanol Mixture", Membrane Journal, 6(4), 250 (1996).
  8. O. Trifunovic and G. Tragardh, "The influence ofsupport layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes", J. Membr. Sci., 259, 122 (2005). https://doi.org/10.1016/j.memsci.2005.03.011
  9. H. S. Choi, Y. T. Park, S. T. Nam, J. H. Jeon, and S. K. Lee, "The Preparation of a Polyimide Membrane for the Separation of Water-Acetic Acid Mixture through Pervaporation", Membrane Journal, 9, 215-220 (1999).
  10. H. Y. Yu, Y. Xie, M. X. Hu, J. L. Wang, S. Y. Wang, and Z. K. Xu, "Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: $CO_2$ plasma treatment", J. Membr. Sci., 254, 219-227 (2005). https://doi.org/10.1016/j.memsci.2005.01.010
  11. B. Bae, B. H. Chun, and D. Kim, "Surface characterization of microporous polypropylenemembranes modified by plasma treatment", Polymer, 42, 7879- 7885 (2001). https://doi.org/10.1016/S0032-3861(01)00245-2
  12. H. I. Kim and S. S. Kim, "Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane", J. Membr. Sci., 286, 193-201 (2006). https://doi.org/10.1016/j.memsci.2006.09.037
  13. T. Carroll, N. A. Booker, and J. Meier-Haack, "Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water", J. Membr. Sci., 203, 3-13 (2002). https://doi.org/10.1016/S0376-7388(01)00701-3
  14. Y. Wang, J. H. Kim, K. H. Choo, Y. S. Lee, and C. H. Lee, "Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization", J. Membr. Sci., 169, 269-276 (2000). https://doi.org/10.1016/S0376-7388(99)00345-2
  15. J. S. Kang, J. K. Shim, H. Huh, and Y. M. Lee, "Colloidal adsorption of bovine serumalbumin on porous polypropylene-g-poly(2-hydroxyethyl metha crylate) membrane", Langmuir, 17, 4352-4359 (2001). https://doi.org/10.1021/la001310y
  16. E. Y. Choi, B. Bae, and S. H. Moon, "Control of the fixed charge distribution in an ionexchange membrane via diffusion and the reaction rate of the monomer", J. Phys. Chem., B, 111, 6393-6390 (2007).
  17. R. Q. Kou, Z. K. Xu, H. T. Deng, Z. M. Liu, P. Seta, and Y. Y. Xu, "Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of alpha-allyl glucoside", Langmuir, 19, 6869-6875 (2003). https://doi.org/10.1021/la0345486
  18. H. M. Ma, R. H. Davis, and C. N. Bowman, "A novel sequential photoinduced living graft polymerization", Macromolecules, 33, 331-335 (2000). https://doi.org/10.1021/ma990821s
  19. A. H. M. Yusof and M. Ulbricht, "Polypropylenebased membrane adsorbers via photo-initiated graft copolymerization: optimizing separation performance by preparation conditions", J. Membr. Sci., 311, 294-305 (2008). https://doi.org/10.1016/j.memsci.2007.12.027
  20. Q. Yang, Z. K. Xu, Z. W. Dai, J. L. Wang, and M. Ulbricht, "Surface modification of polypropylene microporous membranes with a novel glycopolymer", Chem. Mater., 17, 3050-3058 (2005). https://doi.org/10.1021/cm048012x
  21. F. Yao, G. D. Fu, J. P. Zhao, E. T. Kang, and K. G. Neoh, "Antibacterial effect of surfacefunctionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization", J. Membr. Sci., 319, 149-157 (2008). https://doi.org/10.1016/j.memsci.2008.03.049
  22. Q. Yang, J. Tian, M. X. Hu, and Z. K. Xu, "Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP", Langmuir, 23, 6684-6690 (2007). https://doi.org/10.1021/la700275t
  23. H. Molisak-Tolwinska, A. Wencel, and Z. Figaszewski, "The effect of hydrophilization of polypropylene membranes with alcohols on their transport properties", J. Macromol. Sci., Pure Appl. Chem. 35, 857-865 (1998). https://doi.org/10.1080/10601329808002016
  24. P. K. Kang and D. O. Shah, "Filtration of nanoparticles with dimethyldioctadecylammonium bromide treated microporous polypropylene filters", Langmuir, 13, 1820-1826 (1997). https://doi.org/10.1021/la961010+
  25. H. C. Shih, Y. S. Yeh, and H. Yasuda, "Morphology of microporous poly(vinylidene fluoride) membranes studied dy gas permeation and scanning electron microscopy", J. Membr. Sci., 50, 299 (1990). https://doi.org/10.1016/S0376-7388(00)80627-4
  26. S. Munari, A. Bottino, and G. Capannelli, "Casting and perfomance of polyvinylidene fluoride based membranes", J. Membr. Sci., 16, 181 (1983). https://doi.org/10.1016/S0376-7388(00)81309-5
  27. V. Laninovic, "Relationship between type of nonsolvent additive and properties of polyethersulfone membranes", Desalination, 186, 39 (2005). https://doi.org/10.1016/j.desal.2005.01.017
  28. J.-W. Rhim and Y.-K. Kim, "Pervaporation separation of MTBE-Methanol Mixtures using crosslinked PVA Membranes", J. Appl. Polym. Sci., 75, 1699-1707 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O
  29. J. Chen, J. Li., J. Chen, Y. Z. Lin, and X. Wang, "Pervaporation separation of ethyl thioether/heptanemixtures by polyethylene glycol membranes", Separationand Purification Technology, 66, 3 (2009).