Pervaporation Separation Characteristics for Water-Ethanol Mixtures Using Porous Hollow Fiber PVA Composite Membranes

미세 다공성 중공사 PVA복합막을 이용한 에탄올 수용액의 투과증발분리 특성

  • Received : 2013.10.03
  • Accepted : 2013.10.23
  • Published : 2013.10.31

Abstract

The Poly (vinylidene fluoride) and poly (acrylonitrile) (PAN) hollow fiber composite membranes coated with poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) as the crosslinkig agent are prepared. The resulting membranes were characterized for aqueous 90 wt% ethanol solution by pervaporation techniques in terms of the permeability and separation factor. In general, as both the crsslinking reaction temperature and the crosslinking agent concentration increase, the permeability decrease while the separation factor tends to increase. And also the permeability increased and the separation factor decreased as the feed temperature increased. Typically, the permeability $502g/m^2hr$ at the feed temperature $70^{\circ}C$ was obtained for PVDF hollow fiber membrane prepared with the crosslinking agent PAA 3 wt% at the reaction temperature $60^{\circ}C$ whereas the separation factor 218 was shown for the membrane reacted with PAA 11 wt% and at $100^{\circ}C$ for the feed temperature $50^{\circ}C$.

Poly (vinylidene fluoride) (PVDF) poly (acrylonitrile) (PAN) 중공사막에 친수성 고분자인 poly (vinyl alcohol) (PVA)과 가교제인 poly (acrylic acid) (PAA)을 코팅하여 복합막을 제조하였다. 제조된 막의 투과특성평가를 위해 90 wt% 물-에탄올 혼합액에 대한 투과증발실험을 수행하였으며, 반응온도, PAA용액의 농도, 공급액의 온도변화에 따른 투과도 및 선택도를 측정하였다. 일반적으로 반응온도, PAA용액의 농도가 증가할수록 투과도는 낮아지고 선택도는 증가하는 경향을 보였으며, 공급액의 온도가 증가할수록 투과도는 증가하고 선택도는 낮아지는 경향을 보였다. 대표적으로 PVDF중공사 막은 투과도는 PAA 3 wt%, 반응온도 $60^{\circ}C$, 공급액 온도 $70^{\circ}C$에서 $502g/m^2hr$, 선택도는 PAA 11 wt%, 반응온도 $100^{\circ}C$, 공급액 온도 $50^{\circ}C$일 때, 218의 결과를 얻을 수 있었다.

Keywords

References

  1. Y. S. Zhu and H. F. Chen, "Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate", J. Membr. Sci., 138, 123 (1998) https://doi.org/10.1016/S0376-7388(97)00221-4
  2. S. Y. Nam, H. J. Chun, and Y. M. Lee, "Pervaporation separation of water-isopropanol mixture using carboxymethylated poly (vinyl alcohol) composite membranes", J. Appl. Polym. Sci., 72, 241 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990411)72:2<241::AID-APP9>3.0.CO;2-B
  3. C. K. Yeon and K. H. Lee, "Pervaporation separation of water-acetic acid mixture through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde", J. Membr. Sci., 109, 257 (1996). https://doi.org/10.1016/0376-7388(95)00196-4
  4. H. Ohya, K. Matsumoto, Y. Negishi, T. Hino, and H. S. Choi, "The separation of water and ethanol by pervaporation with PVA/PAN composite membranes", J. Membr. Sci., 68, 141 (1992). https://doi.org/10.1016/0376-7388(92)80157-F
  5. H. C. Park and M. H. V. Mulder, "Pervaporation of alcohol-toluene mixture through polymer blend membranes of poly (acrylic acid) and poly (vinyl alcohol)", J. Membr. Sci., 90, 265 (1994). https://doi.org/10.1016/0376-7388(94)80076-6
  6. I. A. Yum, M. H. Yun, and Y. T Lee, "Pervaporation Characteristics of Ion-exchanged NaA Type Zeolite Membranes", Membrane Journal, 19, 189 (2009).
  7. S. M. Ahn, B. J. Chang, J. H. Kim, Y. T. Lee, and S. B. Lee, "Pervaporation Separation of fluoroethanol/ Water Mixture through Crosslinked Poly (vinyl alcohol) Composite Membranes", Membrane Journal, 14, 166 (2004).
  8. O. Trifunović and G. Trägardh, "The influence ofsupport layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes", J. Membr. Sci., 259, 122 (2005). https://doi.org/10.1016/j.memsci.2005.03.011
  9. H. S. Choi, Y. T. Park, S. T. Nam, J. H. Jeon, and S. K. Lee, "The Preparation of a Polyimide Membrane for the Separation of Water-Acetic Acid Mixture through Pervaporation", Membrane Journal, 9, 215 (1999).
  10. M. S. Peresin, Y. Habibi, J. O. Zoppe, J. J. Pawlak, and O. J. Rojas, "Nanofiber Composite of Polyvinyl Alcohol and Cellulose Nanocrystals," Biomacromol.,, 11, 674 (2010). https://doi.org/10.1021/bm901254n
  11. J. J. Scheibel and L. M. Gray, "Polyvinyl Alcohol Co-polymer and Water-soluble Films and Pouches Formed Therefrom," U. S. Patent. No. 7,714,086 B2 (2010).
  12. S. K. Nho, K. H. Choi, J. W. Kwak, and W. S. Lyoo, "Preparation and Application of Poly (Vinyl Alcohol) Having Various Molecular Parameters," Polym. Sci. Technol., 15(1), 4 (2004).
  13. S. Y. Kim, H. S. Shin, Y. M. Lee, and C. N. Jeong, "Propertise of electroresponsive poly (vinyl alcohol) / poly (acrlic acid) IPN hydrogels under an electric stimulus", J. App. Polym. Sci., 73, 1675 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  14. Q. L. Liu, Z. Zhang, and H. F. Chen, "Study on the couplong of esterification with pervaporation", J. Membr. Sci., 182, 173 (2001). https://doi.org/10.1016/S0376-7388(00)00568-8
  15. Y. S. Zhu and H. F. Chen, "Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate", J. Membr. Sci., 139, 123 (1998).
  16. http://www.sulzerchemtech.com/
  17. P. Shweta, "Poly (Vinyl Alcohol) / Cellulose Nanocomposite Barrier Films," Oregon State, US, (2006).
  18. H. C. Park and R. M. Meertens, "Sorption of alcohol- toluene mixtures in poly (acryic acid) - poly (vinyl alcohol) blend membranes and its role on pervaporation", In. Eng. Chem. Res., 37, 4408 (1998). https://doi.org/10.1021/ie980117k