DOI QR코드

DOI QR Code

Hydrophilizing Effect of Support on PRO Membrane Performance through Cellulose Solution Treatment

셀룰로오스에 의한 지지체 친수화가 압력지연삼투막 성능에 미치는 영향

  • Choi, Myungho (Environmental Resoureces and Process Research Center, Korea Research Institute of Chemical Technology) ;
  • Koo, Kee-Kahb (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lim, Jung Ae (Environmental Resoureces and Process Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, BeomSik (Environmental Resoureces and Process Research Center, Korea Research Institute of Chemical Technology)
  • 최명호 (한국화학연구원 환경자원공정연구센터) ;
  • 구기갑 (서강대학교 화공생명공학과) ;
  • 임정애 (한국화학연구원 환경자원공정연구센터) ;
  • 김범식 (한국화학연구원 환경자원공정연구센터)
  • Received : 2013.10.22
  • Accepted : 2013.12.19
  • Published : 2013.12.31

Abstract

This paper has studied the hydrophilizing effect of support on the performance of pressure retarded osmosis (PRO). The hydrophilicity of polyester support has been controlled with cellulose solutions. In order to investigate the effect of hydrophilizing of support, the performance test has been conducted with membrane which compose of active layer and support in absence of support layer. The active layer has been made by casting of cellulose tri-acetate (CTA) 1,4-dioxane solution (13 wt%) and combined with the hydrophilized support. The results show that water fluxes of PRO membranes with hydrophobic or hydrophilized support were measured $0.8L/m^2hr$ and $1.2L/m^2hr$ under $5kgf/cm^2$ pressure, respectively. However, water flux increase did not accord with hydrophilicity of supports treated by cellulose solutions. It is because the porosity and pore size of supports decrease as the cellulose concentration increases. This result confirms that both the hydrophilization of support and the maintenance of membrane porosity are important to enhance the performance of PRO membrane.

본 연구의 목적은 지지체의 친수화가 압력지연삼투(Pressure retarded osmosis, PRO)막의 투과특성에 미치는 영향에 대해서 알아보고자 하였다. 소수성 지지체인 폴리에스테르를 친수성 고분자인 셀룰로오스 용액을 사용하여 친수화도를 조절하였다. 지지체의 친수화 특성만을 파악하기 위해서 지지층 없이 동일한 활성층을 사용하여 PRO 막 투과 특성을 비교하였다. 사용된 활성층은 1,4-dioxane과 cellulose tri-acetate (CTA, 13 wt%)를 사용하여 제조하였으며, $5kgf/cm^2$ 압력 하에서 행한 PRO 성능 평가의 경우 투과도가 친수화된 지지체를 사용한 경우와 친수화되지 않은 경우에 각각 $1.2L/m^2hr$$0.8L/m^2hr$로 친수화된 지지체를 사용할 경우 약 50% 투과량이 증가되는 특성을 보였다. 그러나 셀룰로오스 농도 변화에 따른 지지체의 친수화도 증가가 투과량 변화를 가져오지는 않았다. 이는 지지체를 친수화하기 위해 사용된 셀룰로오스의 농도가 증가함에 따라 지지체의 기공이 막히는 현상에 기인한 것으로 보인다. 이러한 결과를 통해 정삼투공정에서 투과유량을 높이기 위해서는 지지체로서 친수성 소재를 사용하여 분리막을 제조함과 동시에 지지체 기공을 유지하는 것이 중요함을 확인하였다.

Keywords

References

  1. B. R. Jeong, J. H. Kim, B. S. Kim, Y. I. Park, D. H. Song, and I. C. Kim, "Preparation and Chracterization of Cellulosic Forward Osmosis Membranes", Membrane Journal, 227-227 (2010).
  2. A. Achilli and A. E.childress, "Pressure retarded osmosis : From the vision of sidney Loeb to the first prototype installation - Review", Desalination, 205-511 (2010).
  3. R. S. Norman, "Water salination: a source of energy", Science, 186, 350-352 (1974). https://doi.org/10.1126/science.186.4161.350
  4. N. Y. Yip, A. Triraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, "Thin-Film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol, 4360-4369 (2011).
  5. A. Achilli and A. E. Childress, "Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation - Review", Desalination, 261, 205-211 (2010). https://doi.org/10.1016/j.desal.2010.06.017
  6. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281, 70-87 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  7. K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis", J. Membr. Sci., 8, 141-171 (1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  8. I. Lise and M.-B. Hagg, "Review - Pressure Retarded Osmosis and Forward Osmosis Membrane : Materials and Methods", Polymers, 5, 303-327 (2013). https://doi.org/10.3390/polym5010303
  9. I. L. Alsvik and M.-b. Hagg, "Preparation of thin film composite membranes with polyamide film on hydrophilic supports", J. Membr. Sci., 428 (2013).
  10. J. R. McCutcheon and M. Elimelech, "Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes", J. Membr. Sci., 318, 458 (2008). https://doi.org/10.1016/j.memsci.2008.03.021
  11. S. M. Lee, Y. J. Byun, J. H. Kim, and S. S. Kim, "Surface Hydrophilization of PVDF Membrane by Thermal Polymerization Lamination Process", Membrane Journal, 220-225 (2013).
  12. B. R. Jeong, J. H. Kim, B. S. Kim, Y. I. Park, and I. C. Kim, "Effect of Support Membrane Property on Performance of Forward Osmosis Membrane", Membrane Journal, 235-240 (2010).
  13. B. S. Kim, "Performance evaluation of PRO membrane through the semi-continuous devive", KOR Patent 2012-0107195 (2012).
  14. A. Achilli, T. Y. Cath, and A. E. Childress, "Power generation with pressure retarded osmosis: An experimental and theoretical investigation", J. Membr. Sci., 343, 45-52 (2009).