DOI QR코드

DOI QR Code

The Effect of Ocean Acidification on Early Growth of Juvenile Oliver Flounder (Paralichthys olivaceus): in situ Mesocosm Experiment

해양산성화가 넙치의 초기발달에 미치는 영향: 현장 메조코즘(mesocosm) 실험

  • 심정희 (국립수산과학원 어장환경과) ;
  • 권정노 (국립수산과학원 어장환경과) ;
  • 박주면 (부경대학교 해양과학공동연구소) ;
  • 곽석남 (환경생태공학연구원)
  • Received : 2013.10.31
  • Accepted : 2013.11.18
  • Published : 2013.12.31

Abstract

An in situ mesocosm experiment was designed to investigate how exposure to ocean acidification by increased carbon dioxide affected the growth of juvenile oliver flounder (Paralichthys olivaceus). A total of 447 individuals were reared in the mesocosm experimental devices deployed at sandy-muddy bottom in the southern coast of East Sea for 43 days and divided into two groups: treatment group (223 individuals, $6.32{\pm}0.75$ cm, high-$CO_2$ environment) and control group (224 individuals, $6.34{\pm}0.84$ cm, natural $CO_2$ environment). The average values of pH and $CO_2$ concentration in the treatment device were $7.63{\pm}0.13$ and $1660{\pm}540$ ${\mu}atm$, respectively, while those in the control device were $8.07{\pm}0.05$ and $514{\pm}65$ ${\mu}atm$, respectively. There was no significant difference in mortality rate between treatment and control group, and the mortalities in two groups gradually decreased during the study period. But, the increase of size and weight of juvenile oliver flounder was higher in control group than treatment group, i.e., weight gain or growth rate was higher in control group. These results suggested that high $CO_2$ environments could have a significant negative influence on the early growth of juvenile oliver flounder.

해양에서 이산화탄소 증가에 따른 해양산성화가 넙치치어의 성장에 미치는 영향을 조사하기 위하여 현장 메조코즘 실험을 실시하였다. 동해 남부에 위치한 기장군 장안읍의 사질저질에서 실험군(이산화탄소 주입)과 대조군의 실험장비를 설치하여 43일 동안 총 447개체 (실험군 223개체, 대조군 224개체)를 대상으로 실시하였다. 실험군의 pH는 평균 $7.63{\pm}0.13$, 이산화탄소 ($fCO_2$)농도는 평균 $1660{\pm}540$ ${\mu}atm$로 2100년도에 예상되는 수준으로(IPCC 2007) 유지하였으며, 대조구는 현재 기장군 장안읍 해역의 해양환경으로 유지하였다. 실험기간동안 사망률은 실험군과 대조군 사이에서 큰 차이를 나타내지 않았고 시간이 지남에 따라 감소하는 경향을 나타내었다. 넙치치어의 체장과 체중은 대조군에서 더 큰 증가양상을 나타내어, 그 결과 대조군에서 더 큰 성장률(specific growth rate)을 보였다. 결론적으로 본 연구는 해양에서 이산화탄소 농도의 증가는 넙치 치어의 초기 성장에 영향을 줄 수 있는 가능성을 제시하였다.

Keywords

References

  1. Allgaier M, U Riebesell, M Vogt, R Thyrhaug and HP Grossart. 2008. Coupling of heterotrophic bacteria to phytoplankton bloom development at different $pCO_2$ levels: a mesocosm study. Biogeosciences 5:1007-1022. https://doi.org/10.5194/bg-5-1007-2008
  2. Baumann HB, SC Talmage and CJ Gobler. 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Clim. Change 2:38-41.
  3. Checkley Jr. DM, AG Dickson, M Takahashi, A Radich, N Eisenkolb and R Asch. 2009. Elevated $CO_2$ Enhances Otolith Growth Young Fish. Science 324:1683. https://doi.org/10.1126/science.1169806
  4. Chyung MK. 1977, The fishes of Korea. Ilji-sa, Seoul, Korea 727pp.
  5. Cooper CA, JM Whittamore and RW Wilson. 2010. $Ca^{2+}$-driven intestinal $HCO_3^-$ secretion and $CaCO_3$ precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport. Am. J. Physiol. 298:870-876.
  6. Dickson AG, CL Sabine and JR Christian. 2007. Guide to best practices for ocean $CO_2$ measurements. PICES Special Publication 3, 191pp.
  7. Doney SC, WM Balch, VJ Fabry and RA Feely. 2009. Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16-25.
  8. Engel A, I Zondervan, K Aerts, L Beaufort, A Benthien, L Chou, B Delille, JP Gattuso, J Harlay, C Heemann, L Hoffman, S Jacquet, J Nejstgaard, MD Pizay, E Rochelle-Newall, U Schneider, A Terbrueggen and U Riebesell. 2005. Testing the direct effect of $CO_2$ concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 50:493-507. https://doi.org/10.4319/lo.2005.50.2.0493
  9. Frommel AY, R Maneja, D Lowe, AM Malzahn, AJ Geffen, A Folkvord, U Piatkowski, TBH Reusch and C Clemmesen. 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Clim. Change 2:42-46.
  10. Gattuso JP and L Hansson. 2011. Ocean Acidification. Oxford University Press, pp.1-20.
  11. Huh SH, DJ Lee, HG Choo, JM Park and GW Beack. 2010. Feeding habits of olive flounder (Paralichthys olivaceus) collected from coastal waters off Taean, Korea. Kor. J. Fish. Aquatic Sci. 43:756-759.
  12. IPCC. 2007. Climate Change 2007: The physical science basis. pp.996. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon S ed.). Cambridge University Press. Cambridge UK.
  13. Ishimatsu A, H Masahiro and T Kikkawa. 2008. Fishes in high-$CO_2$, acidified oceans. Mar. Ecol. Prog. Ser. 373:295-302. https://doi.org/10.3354/meps07823
  14. Ishimatsu A, M Hayashi, KS Lee, T Kikkawa and J Kita. 2005. Physiological effects on fishes in a high-$CO_2$ world. J. Geophysical Res. 110:C09S09.
  15. Kim JM, K Lee, K Shin, JH Kang, HW Lee, M Kim, PG Jang and MC Jang. 2006. The effect of seawater $CO_2$ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol. Oceanogr. 51:1629-1636. https://doi.org/10.4319/lo.2006.51.4.1629
  16. Kroeker KJ, RL Kordas, R Crim, IE Hendriks, L Ramajo, GS Singh, CM Duarte and JP Gattuso. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19:1884-1896. https://doi.org/10.1111/gcb.12179
  17. Miller GM, SA Watson, JM Donelson, MI McCormick and PL Munday. 2012. Parential environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Clim. Change 2:858-861. https://doi.org/10.1038/nclimate1599
  18. Moran D and JG Stottrup. 2011. The effect of carbon dioxide on growth of juvenile Atlantic cod Gadus morhua L. Aquat. Toxicol. 102:34-30.
  19. Munday PL, DL Dixson, MI McCormick, M Meekan, MCO Ferrari and DP Chivers. 2010. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107:12930-12934. https://doi.org/10.1073/pnas.1004519107
  20. Munday PL, JM Donelson, DL Dixson and GGK Endo. 2009. Effects of ocean acidification on the early life history of a tropical marine fish. Proc. R. Soc. B 276:3275-3283. https://doi.org/10.1098/rspb.2009.0784
  21. NFRDI. 2004. Commercial Fishes of the Coastal & Offshore Waters in Korea. Natl. Fish. Res. Dev. Inst. Busan, Korea 333pp.
  22. NFRDI. 2006. Standard manual of olive flounder culture. p.20-60.
  23. Nilsson GE, DL Dixson, P Domenici, MI McCormick, C Sorensen, SA Watson and PL Munday. 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change 2:201-204. https://doi.org/10.1038/nclimate1352
  24. Oh SY, YS Jang, HS Park, YU Choi and CK Kim. 2012. The influence of water temperature and body weight on metabolic rate of oliver flounder Paralichthys olivaceus. Ocean Polar Res. 34:93-99. https://doi.org/10.4217/OPR.2012.34.1.093
  25. Pierrot DEL and DWR Wallace. 2006. MS Excel program developed for $CO_2$ System calculations. ORNL/CDIAC-105, Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.
  26. Riebesell U, RGJ Bellerby, HP Grossart and F Thingstad. 2008. Mesocosm $CO_2$ perturbation studies: from organism to community level. Biogeosciences 5:1157-1164. https://doi.org/10.5194/bg-5-1157-2008
  27. Shim JH, DJ Kang, IS Han, JN Kwon and YH Lee. 2012. Realtime monitoring of environmental properties at seaweed farm and a simple model for $CO_2$ budget. "The Sea" J. Kor. Soc. Oceanogr. 17:243-251.
  28. Wootton RJ. 1992. Fish Ecology. Cahpman and Hall, New York, USA, p.212.
  29. Yamada U, M Tagwa, S Kishida and K Honjo. 1986. Fishes of the east China sea and the yellow sea. Seikai Reg. Fish. Res. Lab. Seikai, Japan, 501pp.
  30. Yoon SJ, DH Kim, HG Hwang, GC Song and YC Kim. 2007. Effects of water temperature, stocking density and feeding frequency on survival and growth in the oblong rockfish Sebastes oblongus larvae. Kor. J. Ichthyol. 19:1-7.