DOI QR코드

DOI QR Code

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine

HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향

  • Nam, Seung Man (School of Mechanical Engineering, Chungbuk National University) ;
  • Lee, Kye Bock (School of Mechanical Engineering, Chungbuk National University)
  • Received : 2013.08.19
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

엔진 실린더 내부의 난류유동 특성은 내연기관의 열효율을 결정하는 매우 중요한 역할을 한다. 실린더 내 난류유동은 복잡한 3차원 유동으로 유동특성에 대한 자세한 정보는 엔진설계의 최적화를 위해 필수적이다. 균일 예혼합 압축착화(HCCI) 엔진은 가솔린과 디젤엔진 사이의 하이브리드 연소개념이다. 실린더 내 기체의 난류유동은 운동량과 열의 혼합 및 전달률을 증가시키므로 벽면에서의 열전달에 관여하여 HCCI 연소 과정에 중요한 영향을 미치게 된다. 본 연구에서는 연소실 형상에 따른 연소실 내의 기체 난류유동을 LES 모델을 사용한 전산수치해석을 통해 분석하여 HCCI 엔진 연소과정에 미치는 영향을 확인하였고 연구결과는 HCCI 엔진에서 연소실 형상에 따른 연소 특성과 엔진 성능을 개선하기 위한 기본적인 지침에 활용될 수 있다.

Keywords

References

  1. Au, M. Y., Girard, J. W., Dibble, R., Flowers, D., Aceves, S. M., Frias, J. M., Smith, R., Seibel, C. and Mass, U., "1.9-Liter Four-cylinder HCCI Engine operation with exhaust gas recirculation," SAE paper 2001-01-1894, 2001.
  2. T.Joelsson, R. Yu, X.S. Bai, A. Vressner, B. Johansson. "Large eddy simulations and Experiments of the Auto-ignition process of Lean Ethanol/air Mixture in HCCI Engine, SAE paper 2008-01-1668, 2008.
  3. Payri F, Benajes J, Margot X et al. "CFD modeling of the in-cylinder flow in direct-injection Diesel engines", Computers & Fluids 33:995-1021, 2004. https://doi.org/10.1016/j.compfluid.2003.09.003
  4. K. Liu, D.C. Haworth. "Large Eddy Simulation for an Axisymmetric piston-cylinder assembly with and without swirl", Flow Turbulence Combust 85:279-307, 2010. https://doi.org/10.1007/s10494-010-9292-1
  5. Haworth, D. C. & Jansen, K. "Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines", Comput. Fluids 493-524, 2000.
  6. Vermorel, O. et al. "Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES", Combust. Flame 156, 1525-1541, 2009. https://doi.org/10.1016/j.combustflame.2009.04.007
  7. Morse, A. P., Whitelaw, J. H. & Yianneskis, M. "Turbulent flow measurement by Laser Doppler Anemometry in a motored reciprocating engine", Report FS/78/24. Imperial College Dept. Mech Eng, 1978.
  8. Haifeng Liu, Peng Zhang, Zheming Li, Jing Luo, Zunqing Zheng, Mingfa Yao. "Effects of temperature inhomogeneities on the HCCI combustion in an optical engine", Applied Thermal Engineering. 31, pp.2549-2555, 2011. https://doi.org/10.1016/j.applthermaleng.2011.04.020
  9. FLUENT. Fluent 6.3 User's Guide, 2007.
  10. Leonard, A. "Energy cascade in large-eddy simulation of turbulent fluid flow", Adv. Geophys, Vol 18, A, pp 237-248, 1974.
  11. Ogawa. H, Matsui. Y, Kimura. S, Kawashima. J, Three dimensional computations of the effects of the swirl ratio in direct injection diesel engine on and soot emissions, SAE 961125