DOI QR코드

DOI QR Code

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle

MILD 이용한 배기가스 재순환에 관한 연구

  • Received : 2013.10.26
  • Accepted : 2013.12.03
  • Published : 2013.12.31

Abstract

The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.

본 연구에서는 동심원관 형태의 MILD 연소로에서 바깥 원통의 배기가스 통로에서부터 안쪽 원통의 연소통로 사이에 연결관을 설치하고 배기가스를 유입하기 위해 벤츄리 노즐을 사용할 경우 벤츄리 노즐의 기하학적 형상 변화와 고압공기 노즐의 유속 변화에 따라 고압공기 유량, 배기가스 유입량 특성을 수치해석을 통해 살펴봄으로써 최적의 벤츄리 노즐 형상과 고압공기 유속 조건들을 도출하는 것을 본 연구의 목적으로 하였다. 본 연구의 전산 해석을 통해 고압공기 노즐 출구가 연소로 벽면에 부착된 경우와 배기가스에 노출된 경우를 비교하였고, 이 두 가지 형상에 대하여 고압공기 노즐과 벤츄리 노즐의 간격을 고압공기 노즐 직경의 1배에서 3배로 변화할 때의 유입량 특성을 살펴보았다. 또한 고압공기 노즐에서의 출구 유속을 변화하여 유입량 특성을 살펴보았다. 이를 통해 고압공기 노즐과 벤츄리 노즐의 간격이 증가하면 고압공기 노즐이 벽면에 부착된 경우는 유입량이 상대적으로 변화가 적으나 배기가스에 노출된 경우는 유입량이 증가하는 경향을 확인하였다. 또한 고압공기 노즐의 유속이 증가하면 속도가 낮은 범위에서는 유입량비가 상대적으로 증가하는 경향이 크지만 속도가 큰 영역에서는 증가하는 경향이 줄어드는 것을 확인하였다.

Keywords

References

  1. C.S. Lee, S. G. Kim, B. H. Lee, Y. J. Chang, C. H. Jeon, J. H. Song, Comparative study of char burn out and NOx emmisions in O2/N2 and O2/CO2 environments, Journal of Ennergy Engineering, 2011,Vol. 20, No. 3, pp. 191-199. https://doi.org/10.5855/ENERGY.2011.20.3.191
  2. J.A. Wuuning and J.G. Wunning, Flameless oxidation to reduce thermal NO-formation, Prog. Energy Combust.Sci., 1997, Vol.23, pp.81-97. https://doi.org/10.1016/S0360-1285(97)00006-3
  3. M. Katsuki, T.Hasegawa, The science of technology of combustion in highly preheated air, 27 Symp (Int) Combustion, 1998, pp.3135-3146..
  4. A. Cavaliere, M. De Joannon, R. Ragucci, Mild combustion of high temperature reactants, 2nd International Symposium on High Temperature Air Combustion, 1999.
  5. T. plessing, N. Peters, J.G. Wunning, Laseroptical investigation of highly preheated combustion with strong exxxhaust gas recirculation, 27 Symp (Int) Combustion, 1998, pp.3197-3204.
  6. Frazan, H., Maringo, G. J., Riggs, J. D., Yagiela, A. S. and Newell, R. J., Reburning with Powder River Basin Coal to Achieve SO an NO Compliance, Proc. of the Power - Gen Sixth International Conference, 1993, pp.175-187.
  7. Ji Soo Ha, Tae Kwon Kim and Sung Hoon Shim, A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor, Korean Society of Environmental Engineers, 2010, Vol. 32, No. 6, pp.587-592.
  8. Tae Kwon Kim, Sung Hoon Shim, Hyuk Sang Chang and Ji Soo Ha, A numerical study of the combustion characteristics in a MILD combustor with the change of the fuel and air nozzle position and air mass flow rate, Korean Society of Environmental Engineers, 2011, Vol. 33, No. 5, pp.325-331. https://doi.org/10.4491/KSEE.2011.33.5.325
  9. Sung Hoon Shim and Ji Soo Ha, A study on the flow entrainment characteristics of a coaxial nozzle used in a MILD combustor with the change of nozzle position and flow condition, Korean Society of Environmental Engineers, 2012, Vol. 34, No. 2, pp.103-108. https://doi.org/10.4491/KSEE.2012.34.2.103
  10. B.E. Launder and D.B. Spalding, The Numerical Computation of Turbulent Flows. Computer methods in Applied Mechanics and Engineering, 1974, pp. 269-289..
  11. B.F. Magnussen and B.H. Hjertager, On mathematical model of turbulent combustion with special emphasis on soot formation and combustion, In 16th Symp. on Combustion, 1976.
  12. F. Liu, H.A. Becker and Y. Bindar, A comparative modeling in gas-fired furnaces using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models, Int. J. Heat Mass Transfer, 1998, Vol.41, pp.3357-3371. https://doi.org/10.1016/S0017-9310(98)00098-2
  13. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, 1980, pp126-131.

Cited by

  1. A study on the flow characteristics in a MILD combustion waste incinerator with the change of flue gas recirculation inlet location vol.23, pp.3, 2014, https://doi.org/10.5855/ENERGY.2014.23.3.051