DOI QR코드

DOI QR Code

3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation

Geiger Mode로 동작하는 3차원 LADAR 광수신기 개발

  • Received : 2013.04.19
  • Accepted : 2013.06.25
  • Published : 2013.08.25

Abstract

In this paper, we report the design, fabrication and characterization of the 3-Dimensional optical receiver for a Laser Detection And Ranging (LADAR) system. The optical receiver is composed of three parts; $16{\pm}16$ Geiger Mode InGaAs Avalanche Photodiode (APD) array device operated at 1560 nm wavelength, Read Out Integrated Circuit (ROIC) measuring the Time-Of-Flight (TOF) of the return signal reflected from target objects, a package and cooler maintaining the proper operational condition of the detector and control electronics. We can confirm that the LADAR system can detect the signal from a target up to 1.2 km away, and it showed low Dark Count Rate (DCR) of less than 140 kHz, and higher than 28%-Photon Detection Efficiency (PDE). This is considered to be the best performance of the $16{\pm}16$ FPA APD optical receiver for a LADAR system.

본 논문에서는 3차원 영상 획득을 위한 LADAR(LAser Detection And Ranging)용 광수신기 모듈을 설계-제작하고 측정한 결과를 보고한다. 광수신기 모듈은 1 km 이상의 거리에서도 신호를 측정할 수 있도록 디지털모드(Geiger Mode)에서 동작하는 InGaAs APD(Avalanche Photodiode)로 설계하였으며, $16{\pm}16$ FPA(Focal Plane Array)로 설계-제작하였다. 디지털모드(Geiger Mode)는 항복전압 이상의 영역에서 동작하여 작은 광에 대해 반응 할 수 있게 큰 증폭률을 가지게 된다. 1ns의 FWHM(Full Width at Half Maximum)을 갖는 펄스를 수광할 수 있고, 배열 크기는 $16{\pm}16$, Geiger Mode 동작 등의 특성을 만족하도록 광수신기를 구성하기 위해 ROIC(Read Out Integrated Circuit)를 자체적으로 설계-제작하였다. 제작된 광수신기 모듈은 원거리 표적정보 획득이 가능하며, PDE(Photon Detection Efficiency)는 28%, DCR(Dark Count Rate)은 140 kHz 이하의 특성을 보였으며, LADAR 시스템에서 3차원 영상을 획득하였다. 이는 $16{\pm}16$ FPA APD를 이용한 광수신기에서 가장 우수한 특성을 나타낸 것이다.

Keywords

References

  1. S. Verghese, K. A. McIntosh, Z. L. Liau, C. Sataline, J. D. Shelton, J. P. Donnelly, J. E. Funk, R. D. Younger, L. J. Mahoney, G. M. Smith, J. M. Mahan, D. C. Chapman, D. C. Oakley, and M. Brattain, "Arrays of 128${\times}$32 Inp-based Geiger-mode avalanche photodiodes," Proc. SPIE 7320, 7320M-1-8 (2009).
  2. http://en.wikipedia.org/wiki/Time-of-flight_camera#cite_note-16.
  3. J. P. Donnelly, E. K. Duerr, K. A. McIntosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, "Design considerations for 1.06 um InGaAsP-InP geier-mode avalanche photodiodes," IEEE J. Quantum Electron. 42, 797-809 (2006). https://doi.org/10.1109/JQE.2006.877300
  4. J. Asbrock, S. Bailey, D. Baley, J. Boisvert, G. Chapman, G. Crawford, T. de Lyon, B. Drafahl, J. Edwards, E. Herrin, C. Hoyt, M. Jack, R. Kvaas, K. Liu, W. MckKeag, R. Rajavel, V. Randall, S. Rengarajan, and J. Riker, "Ultra-high sensitivity APD based 3D LADAR sensors," Proc. SPIE 6940, 69400 (2008).
  5. K. S. Hyun and C. Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997). https://doi.org/10.1063/1.364225
  6. D. Mosconi, D. Stoppa, M. Malfatti, M. Perenzoni, M. Scandiuzzo, and L. Gonzo, "A CMOS sensor based on single photon avalanche diode for fluorescence lifetime measurements," in Proc. Inst. & Meas. Technology Conference, IMTC 2006 (Sorrento, April 2006), pp. 416-419.
  7. H. Ando, "Low-temperature Zn and Cd-diffusion profiles in InP and formation of guard ring in InP avalanche photodiodes," IEEE Transactions on Electron Devices 29, 1408-1413 (1982). https://doi.org/10.1109/T-ED.1982.20890

Cited by

  1. Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves vol.27, pp.4, 2016, https://doi.org/10.3807/KJOP.2016.27.4.133