
Journal of Institute of Control, Robotics and Systems (2013) 19(7):653-660

http://dx.doi.org/10.5302/J.ICROS.2013.13.1926 ISSN:1976-5622 eISSN:2233-4335

I. INTRODUCTION

In recent years, the exploding use of mobile devices

such as smart phones and tablet PCs accelerates the

demand for Internet access via WLANs (Wireless Local

Area Networks) [1]. Most Internet services use TCP

(Transmission Control Protocol) as a transport-layer protocol

and the amount of uplink traffic is expected to increase

rapidly due to emerging services such as peer-to-peer

contents sharing, audio/video streaming, and mobile video

telephony.

This paper focuses on the fairness problem among uplink

TCP flows in infrastructure WLANs. Consider that several

wireless STAs (stations) are associated with an AP (Access

Point) and STAs transmit TCP data packets to the AP, as

* 책임저자(Corresponding Author)

Manuscript received May 30, 2013 / revised June 5, 2013 / accepted

June 5, 2013

김민호 삼성전자 센터: DMC R&D (minomino0717@gmail.com)

박은찬 김웅섭 동국대학교서울 컴퓨터정보통신공학부, : - ,

(ecpark@dongguk.edu/woongsup@dongguk.edu)

This research was supported by Basic Science Research Program※

through the National Research Foundation of Korea (NRF), funded

by the Ministry of Education, Science, and Technology [Grant No.

2012-0002019].

그림 1. 무선랜에서상향링크 플로우의통신망구조TCP .

Fig. 1. Network topology of multiple uplink TCP flows inWLAN.

depicted in Fig. 1. Then, the AP should compete with

STAs to transmit the corresponding TCP ACKs

(acknowledgments), according to the channel access

mechanism of WLAN, i.e., DCF (Distributed Coordination

Function). Since DCF is designed to assure fair channel

access opportunity among competing STAs including AP,

the AP necessarily has a little chance to serve TCP ACKs

as the number of STAs increases. This bottleneck for the

TCP ACKs in AP's downlink buffer eventually results in

ACK loss due to buffer overflow. This ACK loss along

with TCP's cumulative ACK mechanism affects the behavior

IEEE 802.11n TCP

TCP ACK

TCP Acknowledgement Compression for Fairness Among Uplink

TCP Flows in IEEE 802.11n WLANs

,
*
,

(Minho Kim
1
, Eun-Chan Park

2
, and Woongsup Kim

2
)

1

Digital Media & Communications R&D Center, Samsung Electronics Co., Ltd.
2

Department of Information and Communication Engineering, Dongguk University-Seoul

Abstract: This paper deals with the problem of unfairness among uplink TCP (Transmission Control Protocol) flows associated

with frame aggregation employed in IEEE 802.11n WLANs (Wireless Local Area Networks). When multiple stations have

uplink TCP flows and transmit TCP data packets to an AP (Access Point), the AP has to compete for channel access with

stations for the transmission of TCP ACK (acknowledgement) packets to the stations. Due to this contention-based channel

access, TCP ACKs tend to be accumulated in the AP's downlink buffer. We show that the frame aggregation in the MAC

(Medium Access Control) layer increases TCP ACK losses in the AP and leads to the serious unfair operation of TCP

congestion control. To resolve this problem, we propose the TAC (TCP ACK Compression) mechanism operating at the top of

the AP's interface queue. By exploiting the properties of cumulative TCP ACK and frame aggregation, TAC serves only the

representative TCP ACK without serving redundant TCP ACKs. Therefore, TAC reduces queue occupancy and prevents ACK

losses due to buffer overflow, which significantly contributes to fairness among uplink TCP flows. Also, TAC enhances the

channel efficiency by not transmitting unnecessary TCP ACKs. The simulation results show that TAC tightly assures fairness

under various network conditions while increasing the aggregate throughput, compared to the existing schemes.

Keywords: IEEE 802.11n, fairness, frame aggregation, TCP ACK

Copyright© ICROS 2013

654 Minho Kim, Eun-Chan Park, and Woongsup Kim

of TCP flows in an asymmetric way and leads to the

unfairness problem among uplink TCP flows in

infrastructure WLANs.

The unfairness problem has been addressed in the

literatures [2-5]. The works in [2] and [3] aim to prevent

buffer overflow in the AP by giving the AP more channel

access chances. This can be accomplished by providing

high priority to the AP with the aid of differentiated

channel access mechanism of IEEE 802.11e [2], or by

assuring bi-directional channel access for the STA and AP

[3]. However, this approach has a drawback, i.e., the

aggregate throughput may be decreased, because the

prioritized channel access by the AP increases the

probability of collision with STAs [2], or the bi-directional

channel access opportunity given to the AP may be wasted

due to lack of backlogged TCP ACK [3]. In [4], the

generation of TCP ACK is regulated to assure fairness by

intentionally dropping the received TCP data packet in the

AP based on its queue occupancy. This is effective to

assure fairness, but it may decrease throughput since the

TCP data packets that were successfully delivered to the

AP are dropped. To mitigate the unfairness among uplink

TCP flows, a specific scheduling algorithm is proposed in

[5]; the AP schedules the TCP ACK transmission so that

the TCP flow with smaller CWND (congestion window)

receives TCP ACK preferentially. On the other hand, the

unfairness problem arising between uplink TCP flows and

downlink TCP flows in infrastructure WLANs has been

widely studied and many solutions have been proposed

[6-11].

The IEEE 802.11n standard [12] introduces several new

MAC (Media Access Control) features such as frame

aggregation, block ACK, and reverse direction grant, to

increase the efficiency of MAC. With the frame aggregation

scheme, multiple packets are aggregated and transmitted in

a single frame so as to enhance throughput by reducing the

channel access overheads, e.g., PHY/MAC header, backoff

time, and MAC-layer ACK frame transmission time. Unless

otherwise stated, we refer to a packet as what the upper

layer transfers to the MAC layer and a frame as what

MAC layer transfers to the lower layer. Also, there are two

kinds of ACKs, TCP ACK and MAC ACK, we distinguish

them by indicating the terms “TCP” or “MAC” in front of

ACK. To our best knowledge, none of the existing studies

considers the effect of the IEEE 802.11n frame aggregation

on the unfairness problem among uplink TCP flows. This is

the very first study revealing that the unfairness problem

becomes remarkably exacerbated due to an unintended

interaction between MAC frame aggregation and TCP

congestion control. Moreover, the existing approaches are

not suitable for the case where frame aggregation is

employed, which will be verified by simulation study.

In this paper, we provide a simple solution to resolve

the unfairness problem. We propose the TAC (TCP ACK

Compression) mechanism operating at the top of AP's IFQ

(Interface Queue). The key idea of TAC is to prevent TCP

ACK loss due to buffer overflow, which is the primary

reason of unfairness. For this purpose, we make use of the

properties of TCP cumulative ACK and frame aggregation.

Once TCP ACKs arrive to the AP in bursts due to frame

aggregation, TAC serves only the representative ACK and

discards unnecessary other TCP ACKs by exploiting the

nature of cumulative TCP ACK. In this way, TAC

mitigates the unfairness problem by reducing the queue

occupancy and it also increases the total throughput by not

transmitting the unnecessary TCP ACKs. The ns-2

simulation [13] results show that TAC tightly assures

fairness among uplink TCP flows while enhancing aggregate

throughput up to 30%, compared to the existing schemes.

The rest of the paper is organized as follows. In Section

II, we introduce the frame aggregation scheme in IEEE

802.11n and state the unfairness problem related to frame

aggregation. In Section III, we propose the TAC mechanism

as a solution for the unfairness problem. Then, we present

simulation results in Section IV to evaluate and compare

the performance of TAC with other schemes. Finally, the

conclusion follows in Section V.

II. PROBLEM STATEMENT

IEEE 802.11n introduces two kinds of frame aggregation

schemes, A-MSDU (Aggregated MAC-level Service Data

Unit) and A-MPDU (Aggregated MAC-level Protocol Data

Unit) [14]. Throughout this paper, we consider only

A-MPDU with BA (Block ACK) because it can achieve

higher throughput than A-MSDU in an error-prone wireless

channel. With the A-MPDU scheme, only corrupted MPDU

sub-frames can be selectively retransmitted thanks to

individual error detection code for each sub-frame. When

the STA gets a chance to access channel, it transmits an

A-MPDU frame consisting of several TCP data packets. We

consider that each MPDU sub-frame contains one TCP data

packet. After transmitting the aggregated frame, the STA

requests for BA to the AP. On the BA request, the AP

informs the STA of the transmission success or failure of

each sub-frame by transmitting BA. When TCP data

packets are delivered to the final TCP receiver via the AP,

the TCP receiver generates the corresponding TCP ACKs

and they will arrive to the AP. Then, the AP competes

with other STAs to get the channel access and it finally

transmits an A-MPDU frame consisting of several TCP

ACKs to the STA.

The frame aggregation can increase the channel

TCP Acknowledgement Compression for Fairness Among Uplink TCP Flows in IEEE 802.11n WLANs 655

efficiency by removing several overheads; however, it

makes a negative effect on the fairness among uplink TCP

flows. The reason of unfairness related with frame

aggregation can be analyzed from two viewpoints; (i) the

increase in the delay of AP's channel access and TCP ACK

loss in the AP, and (ii) the difference in the CWND of

TCP flows and the cumulative TCP ACK mechanism.

Several TCP data packets aggregated into a single frame

will be delivered to the TCP receiver in bursts, and the

corresponding TCP ACKs will also be generated and arrive

to the AP in bursts. Compared to the case without frame

aggregation, the transmission time of each STA increases

due to aggregation and the time interval between two

consecutive channel accesses by the AP will increase

accordingly. Therefore, the AP has to accommodate the

burst TCP ACKs until it gets the channel access chance

and the probability of ACK loss due to buffer overflow in

the AP increases, which is one reason of the unfairness

problem. This problem becomes worsen due to the unfair

TCP behavior according to the cumulative ACK mechanism.

The increment of TCP flow's CWND is proportional to the

number of TCP ACKs received in the aggregated frame.

On the burst arrival of TCP ACKs, the TCP sender (i.e.,

STA) increases CWND rapidly. As the degree of frame

aggregation increases, the difference among CWND values

of TCP flows become larger. Due to this difference in

CWND and the property of cumulative TCP ACK

mechanism, some TCP flows with larger CWND can

tolerate the loss of TCP ACK in the AP (i.e., they increase

CWND as if there were no TCP ACK losses at all and

they do not retransmit the TCP data packets) while other

TCP flows with smaller CWND become susceptible to the

TCP ACK loss (i.e., time-out may occur and they reset

CWND to the initial value, as well as unnecessarily

retransmitting the TCP data packets that were successfully

delivered to the AP). Consequently, the frame aggregation

exacerbates the unfairness problem among uplink TCP flows.

To verify the unfairness problem, we performed

preliminary simulations with the network topology in Fig. 1,

where there are 20 STAs and each STA has one uplink

TCP flow. The A-MPDU is employed with the maximum

aggregated frame size, 
max

, and AP can buffer up to B

packets. The size of TCP data packet and transmission rate

are set to the same for all the STAs. Other simulation

settings are the same as described in Sec. IV. Fig. 2 shows

the aggregate throughput and Jain's fairness index [15] for

the limited (B=200) and infinite buffer sizes (B=10,000)

when 
max

varies from 1 KB to 32 KB. In the case of

infinite buffer size, the value of B is set to be much

higher than the product of the maximum size of TCP

CWND and the number of TCP flows, so that the buffer

can hold all TCP ACKs without overflow. From Fig. 2, we

can observe the effects of frame aggregation and AP buffer

size on fairness and the trade-off between throughput and

fairness.

∙ When 
max

is small (1~2 KB), the unfairness problem is

negligible, regardless of the buffer size. This is because

the buffer size is large enough to hold TCP ACKs

without buffer overflow.

∙ As 
max

increases, the unfairness problem becomes

severe in the case of the limited buffer size. In contrast,

the problem is insignificant with the infinite buffer,

which implies that the problem results from the buffer

overflow in the AP.

∙ The aggregate throughput increases as 
max

increases for

both cases. The throughput with the infinite buffer is

smaller than that with the limited buffer, because the

queuing delay in the AP with the infinite buffer

increases RTT (Round Trip Time) of TCP flows.

Moreover, we observe the loss rate of TCP ACKs in

AP's downlink buffer when the buffer size is limited, i.e.,

B = 200, and 
max

varies from 1 KB to 32 KB. In Fig. 3,

the points with ×-mark indicate the ACK loss rate of

individual 20 TCP flows and the square and circle points

indicate their average and standard deviation values,

respectively. The results in Fig. 3 reconfirm the reason of

unfairness problem. When 
max

= 1 KB, i.e., the frame

aggregation is not applied, ACK loss does not occur at all

for most TCP flows and only a few losses occur for a

certain flow. Also, when 
max

= 2 KB, there is no

remarkable difference in the TCP ACK loss rates among

TCP flows, the loss rates range between 0 and 2.6%. In

these cases, the unfairness problem hardly happens, as

already shown in Fig. 2. However, the deviation of loss

rate, as well as its average value, increases significantly as


max

increases. When 
max

is increased to 32 KB, the

average and standard deviation of ACK loss rate increase

그림 2. 최대집적프레임의크기에따른전체처리율과형평성

지표.

Fig. 2. Aggregate throughput and fairness index for several values

of the maximum aggregated frame size.

656 김 민 호 박 은 찬 김 웅 섭, ,

by 63 and 22 times, respectively, compared to the case of


max

= 1 KB. Especially when 
max

= 16 KB, 8 TCP

flows suffer from small loss rate less than 2%, whereas 4

TCP flows suffer from serious loss rate exceeding 12%.

Also when 
max

= 32 KB, the minimum and maximum

values of loss rate are 1.2% and 19.8%, respectively. As a

result, the deviation in the TCP ACK loss rates shown in

Fig. 3 debases the fairness among TCP flows.

III. TCP ACK COMPRESSION MECHANISM

1. Basic algorithm

To resolve the unfairness problem, we propose the TAC

mechanism which is implemented at the top of AP's IFQ.

The key idea of TAC is motivated by the nature of

cumulative TCP ACK mechanism combined with frame

aggregation. The TCP ACK cumulatively acknowledges all

the TCP data packets up to the sequence number indicated

in the TCP ACK. Recall that multiple TCP ACKs will

arrive in bursts at AP's IFQ when the frame aggregation is

used. We define the RACK (Representative TCP ACK) as

the TCP ACK with the highest sequence number among

these burst TCP ACKs. For the time being, we do not

consider the loss of TCP data/ACK packets. It is noteworthy

that the TCP ACKs except RACK are redundant because

RACK can representatively acknowledge the successful

delivery of all the TCP data packets transmitted in bursts.

The goal of TAC is to determine RACK and to enqueue

only RACK to AP's IFQ. For this purpose, TAC manages

a logical queue to pick out the RACK. We assume that

TAC can identify TCP flows by observing the destination

address or port number. When the frame aggregation is

used, the time gap between the consecutive TCP ACKs that

belong to the same TCP flow and arrive to the AP is at

most 

, which depends on several delays in the network,

e.g., link transmission delay, node processing delay, or

queuing delay. The design guideline to set the value of 


will be given in the following sub-section. Consider that

TAC maintains a timer whose value is 

for each TCP

flow. When the first TCP ACK of a specific TCP flow

arrives in the AP, TAC designates this packet as RACK,

and starts the timer and waits for the subsequent TCP

ACKs until the timer reaches 

. If a subsequent TCP

ACK, referred to as a new packet, arrives before the timer

expires, TAC observes its destination address or port

number, as well as the sequence number. If it is

determined to belong to the same flow with the RACK and

its sequence number is higher than that of RACK, the new

packet becomes as RACK and the previous RACK is

discarded. After then, TAC restarts the timer and waits for

the subsequent TCP ACKs as the same way in the above.

If there is no new arrival of TCP ACKs within 

, TAC

enqueues the current RACK to the IFQ so that it is

delivered to the MAC layer. If the sequence number of

new packet belonging to the same flow with the RACK is

not greater than that of RACK, this new packet is not

redundant; it is probably the duplicate TCP ACK to request

retransmission of lost TCP data packet and to inform the

TCP sender of network congestion. Thus, in this case, TAC

immediately enqueues the new packet to the IFQ. In this

way, TAC can enqueue only RACK to the IFQ, while

discarding unnecessary TCP ACKs. Fig. 4 shows the flow

chart of TAC.

그림 3. 최대집적프레임의크기에따른 플로우별 TCP ACK

손실률.

Fig. 3. Per-flow TCP ACK loss rate for several values of the

maximum aggregated frame size.

그림 4. 압축메커니즘의흐름도TCPACK .

Fig. 4. Flow chart of TCPACK compression mechanism.

무선랜에서 상향링크 플로우간 형평성 향상을 위한 압축기법IEEE 802.11n TCP TCP ACK 657

2. Discussion of TAC

The proposed TAC algorithm requires a minimal change

in the AP without any changes in the STA, and it modifies

neither the MAC protocol nor the TCP protocol at all.

Even with this minimal change, the TAC is designed to

operate in a robust way under the cases where TCP data

packet or RACK is lost and where uplink TCP flows

coexist with downlink TCP flows Also, the effect of 
 on

the performance of TAC needs to be investigated. We

discuss the following several points related to the operation

of TAC.

2.1 Loss of TCP data packet

We consider two reasons of TCP data packet loss.

∙ Loss due to channel error or collision in the wireless

link: TAC operates in the same way even in this case,

as long as A-MPDU is implemented such that it assures

in-order delivery. If the transmission of a sub-frame in

the A-MPDU frame failed, the corrupted sub-frame is

retransmitted in the MAC layer, and the MAC layer

does not deliver sub-frames that were successfully

received to the upper layer until it successfully receives

the retransmitted sub-frame. Thus, the loss of TCP data

packet can be recovered by the MAC-layer

retransmission, and in-order TCP data packets arrive to

the AP in bursts.

∙ Loss due to buffer overflow in the wired link: In this

case, TAC receives duplicate TCP ACKs, which imply

TCP data packet loss and invoke TCP retransmission.

Recall that TAC discards TCP ACKs only if the new

packet has higher sequence number than the current

RACK. Therefore, TAC does not discard these duplicate

TCP ACKs and it does not make any negative effect on

the operation of TCP congestion control.

2.2 Loss of RACK

RACK can also be corrupted due to wireless channel

error or collision, but this can be recovered by the

MAC-layer retransmission. It is important to note that the

time of MAC-layer retransmission (e.g., several tens of

milliseconds) is much shorter than TCP time-out (e.g.,

several hundreds of milliseconds), and thus, the loss of

RACK can be recovered before TCP time-out occurs.

Moreover, the error rate of RACK is usually lower than

that of TCP data packet because the size of TCP ACK

packet (40 bytes including IP header) is much smaller than

that of TCP data packet (500 ~ 1500 bytes) and that the

error rate of A-MPDU sub-frame is usually proportional to

the size of sub-frame.

2.3 Coexistence with downlink TCP flows

Recall that TAC is applied only to TCP ACKs for

uplink TCP flows. If there exist downlink TCP flows, their

TCP data packets arrive to the AP. They bypass the TAC

and are enqueued to the IFQ of AP. Also, the TCP ACKs

for downlink TCP flows will arrive from the STA to the

AP but they are delivered from the lower layer to the

MAC layer without any processing by the TAC. Thus,

TAC works well if downlik TCP flows coexist with uplink

TCP flows.

2.4 Effect of RACK timer

The TAC algorithm has the sole design parameter, 
,

which is used to determine RACK among burst TCP

ACKs. If it is set to a small value, TAC makes the

premature decision although subsequent TCP ACKs will

arrive soon, and then, it enqueues redundant RACKs. The

extreme case where 
 is zero becomes equivalent to the

case where TAC is not implemented, i.e., every TCP ACK

is enqueued as an individual RACK. Otherwise if 
 is set

to a large value, TAC waits for subsequent TCP ACKs

long time unnecessarily, which will increase the delay of

RACK transmission. However, in both cases, TAC does not

result in any critical negative effect on TCP behaviors.

We provide a guideline to set the value of 
. Firstly,

the time gap between two consecutive TCP ACKs cannot

exceed the RTT (e.g., 100 ms). Secondly, it cannot be

smaller than the transmission delay of the slowest link in

the network (e.g., 0.8 ms when the packet size is 1 KB

and the link capacity is 10 Mb/s). Thirdly, the time gap

probably increases as the number of links between TCP

sender and receiver increases and the network becomes

congested. Taking all these points into account, we

conclude that the appropriate range of 
 lies between

several milliseconds and a few tens of milliseconds for the

typical network configuration.

IV. PERFORMANCE EVALUATION

1. Simulation configuration

We evaluate the performance of TAC via ns-2 simulation

[13]. We consider the network topology in Fig. 1, where N

STAs exist and each STA has one uplink TCP flow. We

used TCP-NewReno, the most common version of TCP in

the current Internet, and the greedy FTP traffic was

generated and transferred over the TCP flows. The sizes of

TCP data packet was set to 1024 bytes. The size of

maximum CWND and IFQ were set to 50 packets and 200

packets, respectively. The parameters of MAC/PHY were set

according to the IEEE 802.11n standard. In order to focus

on the unfairness resulting from TCP behaviors and to rule

out the unfairness in multi-rate WLANs, we set the

transmission rate of all the STAs to the same value of 65

Mb/s. The capacity of all the wired links in Fig. 1 was set

to 100 Mb/s. As performance measure, Jain's fairness index

and aggregate throughput were considered. The

performances were evaluated and compared for the

658 Minho Kim, Eun-Chan Park, and Woongsup Kim

following four schemes.

∙ AGG: This is the baseline scheme that only employs

A-MPDU without any mechanisms to assure fairness.

∙ DIFF: This scheme differentiates the channel access

chances between AP and STAs to mitigate the unfairness

problem. The value of minimum contention window was

set to 7 and 15 for the AP and STAs, respectively, to

allow the preferential channel access of the AP. This

scheme can reduce the TCP ACK loss due to buffer

overflow in the AP, which is similar to the idea in [2].

∙ RDG: The RDG (Reverse Direction Grant) mechanism

with A-MPDU is employed to grant the bi-directional

channel access opportunity to STA and AP, as similar to

[3]. If a STA gets the channel access chance and

finishes transmitting TCP data packets to the AP, then

the channel access opportunity is given to the AP so

that the AP can transmit its backlogged TCP ACKs

without the channel access procedure. This scheme

reduces the channel access delay for TCP ACKs, as well

as reducing ACK loss in the AP.

∙ TAC: This is the proposed mechanism. The value of 


was set to 5 ms according to the guideline given in the

previous section.

In all the schemes, A-MPDU was implemented such that

a STA including AP aggregates as many packets as

possible within the maximum size of aggregated frame. If

the STA (or AP) gets the chance of channel access but the

number of backlogged packets is not large enough to

construct the maximum allowed size of aggregated frame,

which is possible due to TCP congestion control

mechanism, it constructs the aggregated frame with the

existing packets in its transmission queue.

2. Effect of number of flows

The first simulation investigates how the number of

uplink TCP flows (or the number of STAs) affects fairness

and throughput. This simulation was performed in the case

of error-free ideal channel condition and the maximum size

of aggregated frame, 
max

, was set to 16 KB.

Fig. 5(a) shows the fairness index (FI) when N changes

from 1 to 30. In the case of AGG, FI decreases as N

increases, because a large number of TCP ACKs are

accumulated in the IFQ of AP as N increases, which

results in ACK losses due to buffer overflow. Especially

when N = 30, FI of AGG is about 0.6. However, the

fairness is tightly attained in RDG and TAC; FI is at least

0.99 for the entire range of N. This is because they can

prevent buffer overflow by maintaining queue occupancy to

a moderate level. In the case of DIFF, FI slightly decreases

as N increases, e.g., it is about 0.9 when N = 30, implying

that the performance of DIFF is not well scalable with

respect to N.

(a) Fairness index.

(b) Aggregate throughput.

그림 5. 상향링크 플로우수에따른여러가지기법의성능TCP

비교.

Fig. 5. Performance comparison of several schemes with respect

to the number of uplink TCP flows.

The throughput with respect to the value of N is shown

in Fig. 5(b). The throughputs of AGG and TAC are kept

nearly constant as N varies from 5 to 30. The reason is as

follows. In contrast to the case where STAs have infinite

amount of UDP traffic, the collision probability does not

notably increase even though N increases, because TCP

adjusts its transmission rate based on the congestion control

mechanism and the effective number of contending STAs is

not proportional to N but remains nearly constant [16].

However, in the cases of DIFF and RDG, the throughput

remarkably decreases as N increases; it decreases from 51

and 49 Mb/s to 35 and 38 Mb/s, respectively, as N

increases from 1 to 30. The throughput decrease of DIFF

and RDG results from the increase of collision probability.

In the case of DIFF, the smaller size of AP's contention

window contributes to increasing the channel access

probability of AP to serve TCP ACKs fast; however, the

aggressive channel access of AP also increases the collision

probability, which degrades the throughput. This is similar

to the case of RDG; the STAs always participate in the

competition of channel access because STAs receive TCP

ACKs immediately after sending TCP data packets, and

thus, the collision probability increases as N increases. The

throughput improvement of TAC over DIFF and RDG is up

to 32% and 21%, respectively. The simulation results in

TCP Acknowledgement Compression for Fairness Among Uplink TCP Flows in IEEE 802.11n WLANs 659

Fig. 5 confirm that the proposed TAC scheme tightly

assures fairness, as well as improving total throughput,

while the other schemes suffer from the trade-off between

fairness and throughput.

3. Effect of frame aggregation

Next, we focus on the effect of frame aggregation on

the fairness and throughput. In this simulation, N was set

to 20 and 
max

was varied from 1 KB to 32 KB. The

wireless channel was considered to be error-prone with the

moderate bit error rate of 10
-5
, so that the error rates of

A-MPDU sub-frame containing a TCP data packet and an

ACK packet are about 8% and 0.3%, respectively.

The effect of 
max

on fairness is shown in Fig. 6(a),

which is similar to that of N (compare Fig. 6(a) with Fig.

5(a)). The performance of AGG is significantly degraded as


max

increases, while those of RDG and TAC are almost

immune to the change of 
max

, i.e., FI is not below 0.98,

regardless of the value of 
max

. As 
max

increases, DIFF

does not work well; FI drops to 0.91 when 
max

= 32 KB.

On the other hand, as shown in Fig. 6(b), the

throughputs of all the schemes increase as 
max

increases,

because the channel access overhead is effectively decreased

as more A-MPDU sub-frames are aggregated. The

throughput of AGG is higher than those of DIFF and RDG

by up to 18% and 12%, respectively. Together with the

results in Fig. 6(a), these results mean that DIFF and RDG

assure fairness at the cost of aggregate throughput, whereas

AGG improves throughput at the cost of fairness. However,

TAC outperforms all the other schemes in terms of both

fairness and throughput. The throughput of TAC is higher

than those of AGG, DIFF, and RDG by up to 10%, 29%,

and 23%, respectively. It is worthwhile to note that the

throughput improvement by TAC over the other schemes

increases as 
max

increases. This is because TAC does not

transmit unnecessary TCP ACKs, whose number increases

in proportion to the value of 
max

. Consequently, TAC

increases the overall throughput, as well as achieving

fairness.

V. CONCLUSION

In this paper, we have investigated the effect of frame

aggregation on the fairness among uplink TCP flows in

IEEE 802.11n WLANs. We have shown that the frame

aggregation exacerbates the unfairness problem, and we

have analyzed its reason from the viewpoints of the TCP

ACK loss in AP's buffer and the characteristic of TCP

congestion control. To resolve this problem, we have

proposed the TAC mechanism. By discarding unnecessary

TCP ACKs and serving only the RACK in AP's IFQ, TAC

prevents buffer overflow and assures fairness among uplink

TCP flows. At the same time, TAC enhances the aggregate

throughput by effectively reducing the number of TCP

ACKs to be transmitted. The strength of TAC is that it

needs to be implemented only in the AP without any

additional implementation in the STAs, and it does not

modify the standard TCP and MAC protocols. The

simulation results have confirmed that TAC outperforms the

conventional approaches in terms of both fairness and

aggregate throughput under various network configurations.

REFERENCES

[1] L. Munõz, R. Agero, J. Choque, J. A. Lrastorza, L. A.

G. Sánchez, M. Petrova, and P. Möahönen, “Empowering

next generation wireless personal communication

netorks,” IEEE Communication Magazine, vol. 42, no. 5,

pp. 64-70, May 2004.

[2] D. J. Leith and P. Clifford, “Using the 802.11e EDCF

to achieve TCP upload fairness over WLAN links,”

Proc. of Modeling and Optimization in Mobile, Ad Hoc,

and Wireless Networks (WiOPT), pp. 109-118, Apr.

2005.

[3] H. T. Wu and S. D. Cheng, “DCF+: An enhancement

for reliable transport protocol over WLAN,” Journal of

Computer Science and Technology, vol. 18, no. 2, pp.

201-209, Mar. 2003.

(a) Fairness index.

(b) Aggregate throughput.

그림 6. 최대집적프레임크기에따른여러가지기법의성능

비교.

Fig. 6. Performance comparison of several schemes with respect

to the maximum aggregated frame size.

660 김 민 호 박 은 찬 김 웅 섭, ,

[4] Y. Hirano and T. Murase, “Uplink TCP traffic control

with monitoring downlink buffer for throughput fairness

over wireless LANs,” Proc. of Personal, Indoor and

Mobile Radio Communications (PIMRC), pp. 737-741,

Sep. 2009.

[5] F. Keceli, I. Inan, and E. Ayanoglu, “TCP ACK

congestion control and filtering for fairness provision in

the uplink of IEEE 802.11 infrastructure basic service

set,” Proc. of IEEE International Conference on

Communications (ICC), pp. 4512-4517, Jun. 2007.

[6] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and P. Sinha,

“Understanding TCP fairness over wireless LAN,” Proc.

of IEEE INFOCOM, pp. 863-872, Apr. 2003.

[7] Y. Wu, Z. Niu, and J. Zheng, “Study of the TCP

upstream/downstream unfairness issue with per-flow

queueing over infrastructure-mode WLANs,” Wirless

Communications and Mobile Computing, vol. 5, no. 4,

pp. 459-471, Jun. 2005.

[8] D. J. Leith, P. Clifford, D. W. Malone, and A. Ng,

“TCP fairness in 802.11e WLANs,” IEEE Communica-

tions Letters, vol. 9, no. 11, pp. 964-966, Nov. 2005.

[9] Q. Wu, M. Gong, and C. Williamson, “TCP fairness

issues in IEEE 802.11 wireless LANs,” Computer

Communications, vol. 31, no. 10, pp. 2150-2161, Jun.

2008.

[10] Q. Xia, X. Jin, and M. Hamdi, “Active queue

management with dual virtual proportional integral

queues for TCP uplink/downlink fairness in infrastructure

WLANs,” IEEE Trans. on Wireless Communications, vol.

7, no. 6, pp. 2261-2271, Jun. 2008.

[11] E.-C. Park, D.-Y. Kim, H. Kim, and C.-H. Choi, “A

cross-layer approach for per-station fairness in TCP over

WLANs,” IEEE Trans. on Mobile Computing, vol. 7, no.

7, pp. 898-911, Jul. 2008.

[12] IEEE 802.11 Working Group, “Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer

(PHY) Specifications Amendment 5: Enhancements for

Higher Throughput,” IEEE Std. 802.11n-2009, Oct. 2009.

[13] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns.

[14] D. Skordoulis, Q. Ni, H. H. Chen, A. P. Stephens, C.

Liu, and A. Jamalipour, “IEEE 802.11n MAC frame

aggregation mechanisms for next-generation high-

throughput WLANs,” IEEE Wireless Communications,

vol. 15, no. 1, pp. 40-47, Feb. 2008.

[15] D.-M. Chiu and R. Jain, “Analysis of the increase and

decrease algorithms for congestion avoidance in computer

networks,” Computer Networks and ISDN Systems, vol.

17, no. 1, pp. 1-14, Jun. 1989.

[16] R. Bruno, M. Conti, and E. Gregori, “Analytical

modeling of TCP clients in Wi-Fi hot spot networks,”

Proc. of NETWORKING 2004, pp. 626-637, May 2004.

Minho Kim

received B.S. degree from the School of

Electrical and Electronic Engineering,

Yonsei University, Seoul, Korea, in

2007, and Ph.D. degree from the School

of Electrical Engineering and Computer

Science, Seoul National University,

Seoul, Korea, in 2013. He is currently a senior engineer with

Samsung Electronics, Co., Ltd. His research interests are in

the area of wireless networks, including wireless LAN, mobile

WiMAX, link adaptation, multicasting, wireless TCP.

Eun-Chan Park

received B.S., M.S., and Ph.D. degrees

from the School of Electrical Engineer-

ing and Computer Science, Seoul

National University, Seoul, Korea, in

1999, 2001, 2006, respectively. He is

currently an Assistant Professor in the

Department of Information and Communication Engineering,

Dongguk University-Seoul, Korea since 2006. His research

interests include performance analysis, resource allocation,

quality of service, congestion control, cross-layer optimization

in wired and wireless networks.

Woongsup Kim

received B.S. degree in Computer

Engineering from Seoul National

University, Korea in 1998, M.S. degree

in Computer and Information Science

from University of Pennsylvania, USA,

in 2001, Ph.D. degree in Computer

Science and Engineering from Michigan State University,

USA, in 2006 respectively. Since 2007, he has been with the

Department of Information and Communication Engineering,

Dongguk University-Seoul, Korea, where he is currently a

Assistant Professor. His research interests are in the areas of

software engineering, and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

