와류 안정화를 위한 후향계단 유동 능동제어기법

(Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step)

이 진 익*

(Jin-Ik Lee)

요 약

본 논문에서는 유동의 안정된 흐름 제어를 위한 유동제어에 대해 다룬다. 전산유체역학 해석을 통해 제공된 대용량의 유동 데이터를 POD 방법을 통하여 축약하고, 제어측면에서 시간 및 주파수 영역에서의 분석에 근거하여 적절한 수준의 저차 모델 링한다. 한편, 유동장 표면에 부착된 압력센서로부터 공간상의 유동상태 추정을 위해 신경망 구조를 갖는 유동추정기를 구성하 고, 되먹임 유동제어기를 설계함으로써 유동제어루프를 구성한다.

Abstract

This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

Keywords: Flow Control, Flow State Estimator, Flow Field Modeling, Proper Orthogonal Decomposition

I.서 론

유동제어라 함은 유동의 흐름을 안정되게 유지하거 나 혹은 유동을 원하는 형태로 제어하는 것이라 할 수 있다. 지금까지 연구되어 온 유동제어는 유체역학 및 구조설계 분야에서 주로 진행되어 왔는데, 이는 유체 해석을 바탕으로 한 유동장 구조 설계와 같은 수동적인 방법이 주를 이룬다. 이러한 수동적인 방법은 유동장의 구조에 있어서 설계의 제한을 가져오거나 혹은 시스템 성능에 있어서 한계를 가질 수 있다. 대표적으로는 항 공기 날개에서 발생되는 박리를 제어하기 위해 날개 표 면에 마이크로 핀을 부착하여 사용한 예를 들 수 있다. 그런데 이러한 방법은 비행 상황에 따른 효율성이 매우 유동적으로서 비행 전 구간에서 큰 성능 개선을 기대하 기 어렵다. 이러한 단점을 극복하기 위해 날개 표면에 플라즈마 구동기를 장착하는 방식이 제시되었는데, 특 정 비행 조건에서 사전에 정해진 구동명령에 의해 플라 즈마를 발생시키는 개루프 제어 방식이다. 하지만 비행 조건은 상황에 따라 매우 다양하게 변하므로 개루프 개 넘으로 성능을 개선하는데 역시 한계가 있었다.

최근에는 국내외에서 보다 적극적인 능동 유동제어 (active flow control)에 관한 연구가 진행되고 있다^[1]. 즉 유동에 관한 연구가 기존의 유체역학/구조설계 분야

^{*} 정회원, 국방과학연구소 정밀유도기술센터 (Precision Guidance Technology Center, ADD) 접수일자: 2012년11월9일, 수정완료일: 2012년12월27일

그림 1. 유동제어 개념도 Fig. 1. Conceptual Diagram of Active Flow Control.

에서 제어분야에까지 확장되고 있다. 유동 능동제어를 위해서는 유동해석의 기본이 되는 전산유체역학 (CFD: Computational Fluid Dynamics)에서부터 풍동시험에 이르기까지 유동 운동의 특성을 제어측면에서 이해 및 해석되며, 이를 근거로 제어루프를 구성하는 것이 요구 된다.

본 연구에서는 후향계단(backward-facing step) 유동 장에서 유동의 능동제어에 관한 내용을 다룬다. 제어측 면에서 유동장을 해석하고, 유동 운동을 수학적으로 모 델링하며, 유동센서 위치를 선정하는 기법 및 유동 추 정기를 설계하고, 마지막으로 유동제어를 위한 되먹임 제어기 설계 및 성능해석 방법 등을 다룬다. 참고로, 그 림 1은 본 연구에서 다룰 후향계단 유동장의 유동 능동 제어 개념도를 도시한 것이다.

1. 유동장 구조

본 연구에서 다룰 유동장은 계단높이가 15cm의 단차 를 갖는 후향계단 구조를 그림 2와 같으며, 유동제어를 위한 제어수단으로 계단 끝 부분에서 45도 상방향으로

blowing/suction 노즐을 갖는 구동기를 사용한다.

유동장의 유동데이터 획득을 위해서 전산유체역학 해석을 수행하였다. 유동장 지배방정식으로 압축성 Navier-Strokes 방정식을 사용하였으며, 난류모델로는 DES(Detached-Eddy Simulation)를 사용하였다^[2]. 계단 끝 부분에서의 자유류(free stream)의 속도는 130m/s이 며, 이때 레이놀즈 수는 1.4e6이다.

2. 유동제어 목적

빛이 어떤 매질을 통과할 때 빛의 경로 길이를 OPL (Optical Path Length)라 한다^[3]. 만약 밀도가 균일하 지 않는 유동장에 빛을 통과시키면 밀도차에 의한 굴 절로 인해 그 경로 길이는 그림 3과 같이 일정하지 않 게 된다.

그림 3. 밀도차에 의한 광경로 예

Fig. 3. Example of Optical Path Length by Density Difference.

이러한 경로 길이차에 의해 초정밀영상을 요구하는 센서의 경우 영상 왜곡을 초래하게 된다. 이러한 현상 을 완화시키기 위해서는 유동장에 분포되는 밀도의 변 화를 최소화시키는 것이 요구된다. 즉 광경로의 차이 (OPD: Optical Path Difference)를 최소화하는 제어문제 로 귀결된다.

참고로, 밀도와 광경로와의 관계식은 다음과 같이 정 리된다.

$$OPL(s,t) = \int_{0}^{L} n(s,t) dl = L + k_{GD} \int_{0}^{L} \rho(s,t) dl$$
(1)

 $n(s,t) = 1 + k_{GD}\rho(s,t)$

여기서 L은 길이이며, 인자 s는 공간상의 위치(x,y) 이고 t는 시간을 의미한다. 또한 Gladstone-Dale 상수 $k_{GD} = 2.289 \times 10^{-4} m^3 / kg$ 는 이다.

한편, 식(1)로부터 광경로의 차이는 다음과 같이 표 현할 수 있다.

$$OPD(s,t) = OPL(s,t) - \overline{OPL(s,y)^{xz}}$$
(2)

따라서 본 연구에서는 그림 2와 같은 후향계단 유동 장에서 밀도차이에 의해 유발되는 광경로차이를 최소로 하는 것을 제어목적으로 한다. 참고로, 유동장의 바닥에 서 빛을 위쪽을 통과시킨 후의 광경로차를 그림 4의 윗 부분에 도시하였다.

그림 4. 유동장 구조 및 밀도 분포 Fig. 4. Flow Field Structure and Density Distribution.

3. 유동장 모델링

가. 유동장 분석

그림 5는 시간에 따른 유동장 밀도분포를 수직면을 절단한 단면에서 고찰한 것이다. 가로 축과 세로 축은 각각 그림 2의 유동장의 가로, 세로 방향을 의미한다. 그림에서 $x = 0.3 \sim 0.5$ 사이에서 밀도 변화가 심하게 발생하는 것을 고찰할 수 있다. 이는 유동의 wake로 인 한 박리가 발생함에 기인한 것으로 해석된다. 유동의 안정된 흐름 즉 유동제어의 목적을 달성하기 위해서는 이 영역에서의 밀도변화가 적도록(밀도의 균질화) 유동 의 흐름을 제어해야 함을 확인할 수 있다.

지금까지 대부분의 유동장 해석은 주로 시간 영역에 서 수행되어 왔으나, 유동제어 측면에서는 주파수 영역 에서의 유동 거동특성 분석이 매우 중요하다. 유동장을 200, 400, 600, 800Hz의 각 주파수별 에너지 분포를 그림 6에 도시하였다. 그림에서 유동 박리가 주로 발생하는 $x = 0.3 \sim 0.5$ 영역은 600Hz 성분이 주를 이루고 있음

그림 5. 시간에 따른 밀도변화 Fig. 5. Density Variation with Time.

Fig. 6. Energy Spectra with Frequency.

을 알 수 있다. 즉 600Hz의 주파수로 운동하는 모드를 제어할 경우 유동 박리를 제어할 수 있음을 시사한다.

나. 유동장 축약

전산유체역학 해석을 통해 획득한 유동 데이터는 공 간상의 각 격자점에서의 시간에 따른 데이터로 주어진 다. 이때 유동의 흐름을 정교하게 해석하기 위해 수~ 수십 µs의 매우 짧은 샘플링 시간간격으로 지배방정식 을 적분하여 데이터를 얻는다. 따라서 유동 데이터는 매우 대용량으로 주어지게 된다. 대용량의 데이터로부 터 제어를 위해 유동 특성을 분석하고, 유동 운동의 동 특성을 직접 모델링하는 것은 매우 어렵다. 뿐만 아니 라 전산유체역학 해석에는 매우 긴 시간이 소요되므로, 제어기를 설계하고 이를 검증하기 위한 시뮬레이션을 위해서는 대용량의 유동장을 적절하게 축약된 형태로 표현하는 것이 요구된다.

대용량의 데이터를 축약하는 방법 중 대표적으로 상용되는 POD(Proper Orthogonal Decomposition)^[4-6] 기 법을 도입하여 유동장 데이터를 축약한다. 이를 이용할 경우, 유동 운동의 고유모드를 추출하고 유동 데이터를 공간구조에 의존적인 항 $\phi_k(s)$ (spatial mode)와 시간에 의존적인 항 $a_k(t)$ (temporal mode)로 비교적 쉽게 직 교분해 할 수 있다.

$$z(s,t) = \sum_{k=1}^{M} \phi_k(s) a_k(t)$$
(3)

여기서 z(s,t)는 밀도, 압력, 속도 분포와 같은 유동 데이터에 해당한다. 식(3)은 < $\phi_i, \phi_j >= 0$, < $a_i, a_j >= 0$ for $i \neq j$ 가 되도록 하는 직교 (orthogonal) 벡터를 찾는 문제로 귀결되며, 이는 특이 치 분해(singular value decomposition)를 통해 구할 수 있다. 특이치 분해를 통해 얻은 고유치(eigenvalue)를 큰 값부터 순차로 정렬한 후 m개만 취할 경우 유동 데 이터는 주요 거동 모드만 포함하는 몇 개의 모드로 축 약이 된다.

$$\hat{z}(s,t) \simeq \sum_{k=1}^{m} \phi_k(s) a_k(t)
= \phi_1(s) a_1(t) + \phi_2(s) a_2(t) + \dots + \phi_m(s) a_m(t)$$
(4)

이때 축약차수 *m*의 선정은 다음과 같이 고유치(에 너지)의 누적 합에 대한 기준으로 결정할 수 있다^[6]. 즉 축약된 유동장에 포함된 에너지 비율의 임계치를 설정 한 후 이 값을 초과하는 차수 *m*을 선정하는 방법이다.

$$\eta = \frac{\sum_{k=1}^{m} \lambda_k}{\sum_{k=1}^{M} \lambda_k}$$
(5)

다. 유동제어변수 선정

식 (4)에서 유동 데이터 *z*가 밀도(*ρ*)라고 하면 식(1) 의 광경로(OPL)는 다음과 같다^[7].

$$OPL = \int_{L} \left[1 + k_{GD} \sum_{k=1}^{m} a_{k}(t) \phi_{k}(s) \right] dl$$

$$= L + k_{GD} \sum_{k=1}^{m} a_{k}(t) \int_{L} \phi_{k}(s) dl$$
 (6)

식 (2), (6)으로부터 광경로차(OPD)는

$$OPD = k_{GD} \sum_{k=1}^{m} a_k(t) \int_{L} \left[\phi_k(s) - \overline{\phi_k}(s) \right] dl \qquad (7)$$

한편, 식 (3)에서 POD에 의해 직교분해된 공간모드 $\phi_k(s)$ 는 시간의 흐름과는 무관한 항이므로 OPD의 rms값을 최소화하기 위해서는 식 (7)에서 시간모드 $a_k(t)$ 의 절대값을 최소화해야 함을 알 수 있다. 즉 축 약된 유동장에서 시간모드 $a_k(t)$ →0으로 할 경우 유동 장 밀도 변화는 최소화됨을 의미한다. 따라서 유동제어 를 위한 제어변수로 시간 모드인 $a_k(t)$ 를 선정한다.

라. 유동장 모델링

식(4)는 주요 거동 에너지 모드만 포함되도록 축약하 였지만, 제어기를 설계하고 분석하기에는 다소 부족한 형태이다. 즉 제어문제에 있어서 제어대상이 되는 플랜 트를 선형 혹은 비선형 운동방정식으로 표현할 경우 다 양한 제어이론의 적용이 용이한데 식(4)는 여전히 데이 터 형태이기 때문이다.

식(4)에서 φ_k는 유동장이 주어질 경우 고정된 값으로 시간에 무관한 항이다. 즉 시간에 대한 변수 a_k의 계수 에 해당한다. 따라서 a_k만 수학적으로 적절히 모델링 할 경우 전체 유동 운동을 표현할 수 있음을 시사한다. 그런데 유동은 매우 비선형성이 강하여 일반적인 모델 링 방법으로는 표현이 쉽지 않다. 이를 위해 다음과 같

- 그림 7. 신경망을 통한 유동장의 ARX 모델링 결과 (위: a_2 모델링 결과, 아래: a_4 모델링 결과)
- Fig. 7. ARX Modeling Results Using Neural Network. (top: a_2 modeling, bottom: a_4 modeling)

이 ARX(Auto Regressive Exogenous) 로 유동장을 모 델링한다^[8~10]. 즉

$$y(k) + c_1 y(k-1) + \cdots + c_{na} y(k-n_c) = d_1 u(k-n_k) + d_2 u(k-n_k-1) + d_{nb} u(k-n_k-n_d+1) + e(t)$$
(8)

여기서 계수 c_i , d_j 는 각각 출력 및 입력 상태변수 계수에 해당하며, 이들 계수 모델링은 wavelet을 activation함수로 하는 신경망(neural network)을 사용 한다.

그림 7은 식(4)에서 k = 2,4번째 시간모드를 식(8)을 이용하여 모델링 한 결과이다. 그림에서 점선은 참값 $a_2(t), a_4(t)$ 이며 직선은 모델링 근사값 $\hat{a_2}(t), \hat{a_4}(t)$ 이다.

모델링 과정에서 유의할 점은 모델링으로 인해 원래 신호 대비 크기 감쇄 및 신호지연(위상오차) 정도를 검 토해야 한다. 이는 실제 플랜트로 제어루프를 설계하는 것이 아니라 축약된 저차 형태의 플랜트 모델을 사용하 기 때문이다. 따라서 제어기를 설계함에 있어서 이러한 모델링 오차를 고려하여 이득 및 위상 여유와 같은 상 대 안정도를 확인해야 한다.

4. 유동장 추정

가. 유동 추정기

전술하였듯이 유동의 안정화 제어는 유동 공간상의 밀도 제어를 의미한다. 따라서 공간상의 유동에 대한 정보가 필요하다. 그런데 일반적인 제어문제와 달리 유 동장은 유동상태를 측정할 수 있는 유동센서를 유동 공 간상에 직접 부착할 수 없으므로, 공간 유동 정보를 간 접적인 추정방식으로 접근해야 한다. 즉 유동장 표면에 센서를 부착하고 이를 근거로 공간상의 유동장을 밀도 정보를 추정한다.

유동 추정을 위해서는 여러 가지 방법을 사용할 수 있으나 여기서는 재귀형 가중 최소자승법(recursive weighted least square estimator)을 이용하여 추정기를 설계하였다^[11].

$$Y(k) = CX(k) \tag{9}$$

$$X = \begin{bmatrix} a_{s1}(P) & a_{s2}(P) & \dots & a_{sq}(P) & P_{s1}P_{s2}\dots & P_{sq} \end{bmatrix}^T$$
(10)

$$Y = \left[a_{f1}(\rho) \ a_{f2}(\rho) \dots \ a_{fm}(\rho) \right]^T$$
(11)

$$P_s = \phi_{s1}a_{s1} + \phi_{s2}a_{s2} + \dots + \phi_{sq}a_{sq} \tag{12}$$

$$a_{s}(P) = [\phi_{s}^{T}\phi_{s}]^{-1}\phi_{s}^{T}P_{s}$$
(13)

$$\rho_f = \phi_{f1} a_{f1} + \phi_{f2} a_{f2} + \dots + \phi_{fm} a_{fm} \tag{14}$$

계측된 압력 P_{si} 에는 유동의 거동에 대한 모든 정보 의 총합 형태를 포함하고 있다. 이러한 압력 정보로부 터 유동의 주요 거동 정보를 세분화함으로써 추정기의 입력에 대한 출력의 민감도를 증대시킬 필요가 있다. 즉 압력 P_{si} 를 식(3)의 POD 방법으로 공간모드와 시간 모드로 분리한 후, 유동의 주요 거동이 포함된 q개의 공간모드 ϕ_s 로부터 식(13)과 같이 시간모드 a_{si} 를 추출 한다. 결과적으로 식(10)과 같이 압력 P_{si} 와 주요 거동 에 대한 시간모드 a_{si} 를 추정기의 입력변수로 사용한다. 한편, 추정기의 출력은 식(11), (14)와 같이 공간 밀도 의 시간모드 a_{fi} 를 사용하였다.

그림 8은 식(9)~(14)로부터 표면 센서 정보를 이용 하여 공간밀도의 2번째와 4번째 시간모드 추정 결과이

그림 8. 유동추정 결과(위: a_2 추정 , 아래 a_4 추정) Fig. 8. Flow Estimation(top: a_2 est., bottom a_4 est).

다. 그림 표기에서 RefTC는 시간모드 $a_2(t)$, $a_4(t)$ 의 참 값(기준 값)이고, LSE는 최소자승 추정치이며, RLSE는 재귀형 최소자승 추정치이다. 그림에서 RLSE 가 추정 결과 위상이나 크기 측면에서 전자의 경우인 LSE에 비해 월등히 우수함을 알 수 있다.

나. 유동 센서

유동 센서는 일반적인 제어센서와 달리 제어 플랜트 인 공간에 장착할 수 없으므로, 유동장 표면에 위치한

그림 9. 유동센서 및 추정 개념도

Fig. 9. Conceptual Diagram of Flow Sensor and State Estimator.

다(그림 9). 그리고 유동 계측을 위한 센서는 일반적으 로 압력센서를 널리 사용한다.

제어측면에서 유동센서 문제는 센서위치의 최적화에 대한 연구가 필요하다^[12]. 유동센서 위치 최적화는 유동 추정 문제와 연동해서 고려해야 한다. 즉 유동센서의 주 목적이 유동추정기에 정보를 제공하고 이로부터 유 동장 상태를 추정하기 위함이므로, 유동 상태를 최적으 로 추정하기에 가장 적합한 위치에 유동센서를 배치하 는 최적화 연구가 필요하다. 이를 위해 공간상의 밀도 추정치를 최소화하는 문제로 목적 함수를 정식화하였다.

$$J(x_s) = \frac{\arg\min}{x_s} \|\hat{\rho} - \rho_f\|_W^2$$
(15)

여기서 $W = diag[w_1, w_2, ..., w_N]$ 는 추정변수에 대한 가중 치이다.

그런데, 유동운동은 비선형성이 매우 강하여 일반적 인 해석적인 방법으로 센서위치를 선정하기가 쉽지 않 다. 따라서 본 연구에서는 수치 최적화 기법을 도입하 였다. 참고로, 최적화를 위한 엔진으로는 PSO(Particle Swarm Optimiation)을 사용하였다.

$$\begin{aligned} v_{id}^{(n+1)} &= w v_{id}^{(n)} + c_1 R_1^{(n)} (p_{id}^{(n)} - x_{id}^{(n)}) + c_2 R_2^{(n)} (p_{gd}^{(n)} - x_{id}^{(n)}) \\ x_{id}^{(n+1)} &= x_{id}^{(n)} + v_{id}^{(n+1)} \end{aligned} \tag{16}$$

 $d=1,2,...,D,\ i=1,2,...,N,\ n=1,2,...$

여기서 *w*는 가중치로 수렴 속도에 중요한 역할을 한다. *c*₁, *c*₂는 각각 cognitive 및 social 상수이고, *R*₁, *R*₂는 각각 0 과 1사이의 균일분포를 갖는 난수이다. 또한 *p_{id}*는 각 개체

그림 10. 센서개수에 따른 센서위치 최적화 결과 Fig. 10. Optimal sensor placement.

252

가 경험한 값 중에서 최고 개체이고, p_{gd} 는 지금까지의 전체 군집 중 최고 개체이다.

유동센서는 유동의 박리가 발생하는 영역인 x=0~0.035 내에 배치한다고 가정한다. 센서의 수가 정해진 경우 각 센서의 위치는 추정오차의 적합도 식(15)가 최 소가 되도록 식(16)의 PSO 방법을 이용하여 구한다. 최 적화 결과를 그림 10에 도시하였다. 세로 축의 센서 수 가 정해진 경우, 최적의 센서위치를 가로 축에 보여주 고 있다. 그림에서 센서 수가 5개 이하인 경우 센서 위 치는 주로 유동의 박리가 시작되는 x=0.2 부근에 배치 하는 것이 최적임을 알 수 있다.

5. 유동 제어

그림 1과 같이 유동장 데이터를 축약하여 플랜트로 모델링하고, 유동센서로부터 유동 상태변수를 추정하여 유동제어기에 제공한다. 유동제어기에서는 전체 시스템 의 안정성을 고려하여 제어입력을 산출하여 그림 2의 계단 끝 부분에 설치된 blowing/suction형의 구동기에 인가하여 유동장을 제어한다.

유동제어기는 최적제어, 적응제어 등의 기법을 적용 할 수 있으며, 여기서는 Zieler-Nicholes 방법을 이용하 여 손쉽게 설계할 수 있는 비례미분 제어기를 사용하였 다^[13].

$$u(t) = k_p a_k(t) + k_d \frac{da_k(t)}{dt}$$
(17)

그림 11은 유동제어 결과를 도시한 것이다. 처음 0.02 초까지 일정한 개루프 명령을 구동기에 인가한 개루프 에 대한 유동장 반응을 고찰하였다. 이후 0.06초까지 앞 서 설계한 비례미분기를 이용하여 폐루프 제어를 실시 하였고, 이후 종료시까지는 제어를 수행하지 않은 경우 즉 유동명령을 '0'으로 인가한 상태에서의 유동장 응답 을 고찰하였다.

제어결과 광경로차는 폐루프 제어구간에서 약 0.05µm 로써, 제어를 수행하지 않는 0.06초 이후의 0.25µm에 비 해 1/5이하로 줄어듦을 확인할 수 있다. 뿐만 아니라 개 루프 제어에 비해서도 1/3수준 이하로 줄어들었음이 확 인된다.

한편, 제어구간에서의 입력이 한정(bound)되어 수렴 되는 것을 보여주고 있는데, 이는 제어루프가 안정됨을 의미한다.

그림 11. 제어결과 광경로차(위) 및 제어입력(아래) Fig. 11. Control Results: OPD rms(top) and Control Input(bottom).

Ⅲ.결론

본 연구에서는 유동의 능동제어를 위한 유동장 폐루 프 시스템 구성 및 설계기법에 대해 정립하였다. 복잡 한 대용량의 유동 데이터를 축약하고, 제어를 위해 수 학적으로 모델링하는 기법, 유동추정기 설계 기법을 제 시하였다. 한편, 유동추정기의 추정 성능측면에서 유동 센서 위치를 최적화하는 기법도 제시하였다. 이러한 유 동장의 폐루프 시스템을 근거로 유동제어기를 설계하였 으며, 결과적으로 유동제어의 목적인 유동장 광경로차 를 확연히 줄일 수 있음을 확인함으로써 제시한 유동장 제어루프 구성방법이 타당함을 알 수 있다.

참고 문 헌

- [1] Rudibert King, *Active Flow Control*, Springer, 2006.
- [2] R. Temam, *Navier–Stokes Equations: Theory* and *Numerical Analysis*, AMS Chelsea Publishing, 2001.
- [3] E. J. Jumper and E. J. Fitzgerald. "Recent

advances in aero-optics," Prog. Aero. Sci., 37: 299-339, 2001.

- [4] A. Chatterjee, "An introduction to the proper orthogonal decomposition", *Current Science*, Vol.78, No.7. pp.808–817, 2000.
- [5] Y. Hua and W. Liu, "Generalized Karhunen-Loeve transform," *IEEE Signal Processing Letters*, Vol. 5, pp. 141–142, 1998.
- [6] 이진익, 이은석, 전병을, 이광섭, "후향계단 유동장 축약모델링 기법", 한국항공우주학회지, 제40권 제 10호, pp.840-845, 2012.
- [7] C. P. Fagley, Reduced Order Modeling and Adaptive Control of a Free, Unstable Shear Layer, Ph.D. dissertation, Univ. of Wyoming, USA, 2010.
- [8] K. Cohen, S. Siegel, J. Seidel, and T. McLaughlin, "Neural Network Estimator for Low-Dimensional Modeling of a Cylinder Wake," *3rd AIAA Flow Control Conf.* AIAA 2006–3491.
- [9] 이진익, 이은석, 전병을, 이광섭, "후향계단 유동장 저차 모델링을 위한 ARX 설계 기법", 한국항공우 주학회지, 제40권 제10호, pp.833-839, 2012
- [10] 김명남, 조진호, 이건일, "ARX 모델과 적응필터 를 이용한 단일 위반 전위의 측정", *대한전자공학 회 학술대회 논문집* (신호처리합동) 제2권 1호, pp. 93-96, 1989.1.
- [11] 이진익, 이은석, 전병을, 이광섭, "다변수 재귀형 최소자승 알고리즘을 이용한 유동상태 추정기 설 계", 2011 전산유체학술대회 추계 학술대회 논문 집, 영남대학교, 2011
- [12] 이진익, 이은석, 전병을, 이광섭, "PSO를 이용한 유동센서 최적화 기법", 2012 한국군사과학기술학 회 종합학술대회 논문집, 경주 현대호텔, pp.1910-1913, 2012.6.
- [13] 이진익, 이은석, 이광섭, C.P. Fagley, "후향계단 유 동장 되먹임 유동제어루프 구성", 2012 유체공학 학술대회 논문집, 경주 드림센터, pp.23-24, 2012.8.

<주관심분야 : 최적제어, 적응제어, 유도/항법/제 어, 유도탄 유도조종제어, 비행제어>