Isolation and Characterization of a Formate Dehydrogenase cDNA in Poplar (Populus alba ${\times}$ P. glandulosa)

현사시나무에서 Formate Dehydrogenase cDNA의 분리와 특성 구명

  • Bae, Eun-Kyung (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Lee, Hyoshin (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Lee, Jae-Soon (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Choi, Young-Im (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Yoon, Seo-Kyung (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Eo, Soo Hyung (Department of Forest Resources, Kongju National University)
  • 배은경 (국립산림과학원 산림생명공학과) ;
  • 이효신 (국립산림과학원 산림생명공학과) ;
  • 이재순 (국립산림과학원 산림생명공학과) ;
  • 최영임 (국립산림과학원 산림생명공학과) ;
  • 윤서경 (국립산림과학원 산림생명공학과) ;
  • 어수형 (공주대학교 산림자원학과)
  • Published : 2013.09.30

Abstract

Formate dehydrogenase (FDH), catalyzing the oxidation of the formate ion to carbon dioxide, is known as the stress protein in response to drought, low temperature and pathogen infection. To study the functions of FDH in poplar (Populus alba ${\times}$ P. glandulosa), we isolated a FDH cDNA (PagFDH1) and examined its expressional characteristics. The PagFDH1 is 1,499 base pairs long and encodes a putative 388 amino acid protein with an expected molecular mass of 42.5 kDa. The PagFDH1 protein has N-terminal mitochondria signal peptide and $NAD^+$ binding domain. Southern blot analysis indicated that a single copy of the PagFDH1 is present in the poplar genome. PagFDH1 is expressed highly in the suspension cells (especially in the lag and early exponential phases) and moderately in roots, flowers and leaves. ABA-mediated enhanced expression of PagFDH1 in response to drought and salt stress treatments indicates that the gene product could play an important role in the development of stress resistant trees.

Formate dehydrogenase(FDH)는 포름산이온을 이산화탄소로 산화하는 반응을 촉매하는 효소로서, 건조와 저온 그리고 병원균 감염 등에 반응하는 스트레스 단백질로 알려져 있다. 본 연구에서는 현사시나무에서 FDH의 cDNA를 분리하여 구조와 발현 특성 등을 조사하였다. 현사시나무의 FDH cDNA(PagFDH1)는 1,499개의 염기쌍으로 이루어져 있으며, 388개의 아미노산으로 구성되는 예상 분자량 42.5 kDa의 단백질을 암호화한다. PagFDH1 단백질은 미토콘드리아 신호펩티드와 $NAD^+$ 결합부위를 가지고 있다. PagFDH1은 현사시나무의 염색체에 1 copy가 존재하며, 배양세포에서 가장 높게 발현되고 뿌리와 꽃 그리고 잎에서도 발현되었다. 현탁배양세포의 생장주기에서 유도기와 초기 지수생장기에 높게 발현하였다. PagFDH1은 건조와 염 스트레스에 반응하여 ABA를 경유한 신호전달경로에 의해 발현이 유도되는 것으로 나타났다. 본 연구결과는 FDH 유전자의 도입과 발현조절을 통한 환경 스트레스 저항성나무의 개발에 도움을 줄 것으로 생각된다.

Keywords

References

  1. Alekseeva, A.A., Savin, S.S. and Tishkov, V.I. 2011. $NAD^{(+)}$-dependent Formate Dehydrogenase from Plants. Acta Naturae 3(4): 38-54.
  2. Alexandrov, N.N., Brover, V.V., Freidin, S., Troukhan, M.E., Tatarinova, T.V., Zhang, H., Swaller, T.J., Lu, Y-P., Bouck, J., Flavell, R.B. and Feldmann, K.A. 2009. Insights into corn genes derived from large-scale cDNA sequencing. Plant Molecular Biology 69: 179-194. https://doi.org/10.1007/s11103-008-9415-4
  3. Andreadeli, A., Flemetakis, E., Axarli, I., Dimou, M., Udvardi, M.K., Katinakis, P. and Labrou, N.E. 2009. Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia. Biochimica Biophysica Acta 1794: 976-984. https://doi.org/10.1016/j.bbapap.2009.02.009
  4. des Francs-Small, C.C., Ambard-Bretteville, F., Small, I.D. and Remy, R. 1993. Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiology 102: 1171-1177. https://doi.org/10.1104/pp.102.4.1171
  5. David, P., des Francs-Small, C.C., Sevignac, M., Thareau, V., Macadre, C., Langin, T. and Geffroy, V. 2010. Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris. Theoretical and Applied Genetics 121: 87-103. https://doi.org/10.1007/s00122-010-1293-x
  6. Dubos, C. and Plomion, C. 2003. Identification of waterdeficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Molecular Biology 51: 249-262. https://doi.org/10.1023/A:1021168811590
  7. Ferry, J.G. 1990. Formate dehydrogenase. FEMS Microbiology Reviews 7: 377-382.
  8. Hourton-Cabassa, C., Ambard-Bretteville, F., Moreau, F., de Virville, D.J., Remy, R. and Francs-Small, C.C. 1998. Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiology 116: 627-635. https://doi.org/10.1104/pp.116.2.627
  9. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M. and Guo, Z.F. 2012. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports 39(2): 969-987. https://doi.org/10.1007/s11033-011-0823-1
  10. Krasensky, J. and Jonak, C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63(4): 1593-1608. https://doi.org/10.1093/jxb/err460
  11. Kumar, S., Dudley, J., Nei, M. and Tamura, K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299-306. https://doi.org/10.1093/bib/bbn017
  12. Lee, H., Lee, J.S., Noh, E.W., Bae, E.K., Choi, Y.I. and Han, M.S. 2005. Generation and analysis of expressed sequence tags from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells. Plant Science 169: 1118-1124. https://doi.org/10.1016/j.plantsci.2005.07.013
  13. Lee, H., Bae, E.K., Park, S.Y., Sjodin, A., Lee, J.S., Noh, E.W. and Jansson, S. 2007. Growth-phase-dependent gene expression profiling of poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells. Physiologia Plantarum 131(4): 599-613. https://doi.org/10.1111/j.1399-3054.2007.00987.x
  14. Legendre, L., Rueter, S., Heinstein, P.F. and Low, P.S. 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiology 102: 233-240. https://doi.org/10.1104/pp.102.1.233
  15. Murashige, T. and Skoog, F.A. 1962. Revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Nian, H., Meng, Q., Zhang, W. and Chen, L. 2013. Overexpression of the formaldehyde dehydrogenase gene from Brevibacillus brevis to enhance formaldehyde tolerance and detoxification of tobacco. Applied Biochemistry and Biotechnology 169(1): 170-180. https://doi.org/10.1007/s12010-012-9957-4
  17. Osakabe, Y., Kawaoka, A., Nishikubo, N. and Osakabe, K. 2012. Responses to environmental stresses in woody plants: key to survive and longevity. Journal of Plant Research 125(1): 1-10. https://doi.org/10.1007/s10265-011-0446-6
  18. Popko, J., Hansch, R., Mendel, R.R., Polle, A. and Teichmann, T. 2010. The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biology (Stuttg) 12(2): 242-258. https://doi.org/10.1111/j.1438-8677.2009.00305.x
  19. Popov, V.O., Shumilin, I.A., Ustinnikova, T.B., Lamzin, V.S. and Egorov, T.A. 1990. NAD-dependent formate dehydrogenase from methylotrophic bacteria Pseudomonas sp. 101. I. Amino acid sequence. Bioorg Khim 16: 324-335.
  20. Ralph, S.G., Chun, H.J., Cooper, D., Kirkpatrick, R., Kolosova, N., Gunter, L., Tuskan, G.A., Douglas, C.J., Holt, R.A., Jones, S.J., Marra, M.A. and Bohlmann, J. 2008. Analysis of 4,664 high-quality sequence-finished poplar fulllength cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics 9: 57. https://doi.org/10.1186/1471-2164-9-57
  21. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221-227.
  22. Shiraishi, T., Fukusaki, E. and Kobayashi, A. 2000. Formate dehydrogenase in rice plant: Growth stimulation effect of formate in rice plant. Journal of Bioscience and Bioengineering 89: 241-246. https://doi.org/10.1016/S1389-1723(00)88826-X
  23. Southern, E.M. 1975. Detection of specific sequences among DNA fragments. Journal of Molecular Biology 98: 503-517. https://doi.org/10.1016/S0022-2836(75)80083-0
  24. Tishkov, V.I. and Popov, V.O. 2006. Protein engineering of formate dehydrogenase. Biomolecular Engineering 23: 89-110. https://doi.org/10.1016/j.bioeng.2006.02.003
  25. Vinals, C., Depiereux, E. and Feytmans, E. 1993. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochemical and Biophysical Research Communications 192: 182-188. https://doi.org/10.1006/bbrc.1993.1398