Behavior Analysis of Particle Crushing about Sabkha Layer under Hydrotest

Sabkha층의 Hydrotest 시 입자파쇄 거동분석

  • Kim, Seokju (Dept. of Civil Engineering, Kumoh National Institute Technology) ;
  • Han, Heuisoo (Dept. of Civil Engineering, Kumoh National Institute Technology)
  • Published : 2013.09.01

Abstract

Carbonate sands can be crushed under low confining pressure to achieve high compressibility. So particle crushing has significant influence on characteristics of strength and deformation. Trial embankment and hydrotest are conducted on Sabkha layer, consisting of carbonate sand to build tank structure. In this paper the settlement behavior was analyzed from each test. Particle crushing happened from 80 to 170kPa stress under compression test, and calcium was detected from chemical test. The test result came out Sabkha soil was very weak and easy to be crushing. About trial embankment test, particle crushing was not happen, and then extinction of pore water pressure and settlements were finished just during 2 days. On the other hand, the long-term settlement was happened in hydrotest. So the two test results did not correspond to each other. If loading stress is higher than yielding stress, instant settlement and secondary compression settlement are happened as a result of the particle crushing.

탄산질 모래는 낮은 구속압에서도 입자파쇄가 발생하며 이로 인해 높은 압축성을 나타내기 때문에 입자파쇄가 강도 및 변형특성에 중요한 영향을 미친다. 본 논문은 탄산질 모래로 구성된 Sabkha층에 Tank 설치를 위하여 시험성토 및 Hydrotest를 수행한 후 지반의 침하거동을 비교 분석한 것이다. 현장 Sabkha층 시료는 압밀시험결과 80~170kPa에서 입자파쇄가 발생하였고, 화학조성을 분석한 결과 석영질 모래에서 검출되지 않은 칼슘성분이 다량 검출되어 입자파쇄가 잘 일어날 수 있음을 알 수 있었다. 입자파쇄가 발생하지 않은 시험성토에서는 성토완료 이틀만에 간극수의 소산과 침하가 완료되었으나 입자파쇄응력보다 큰 200kPa의 하중이 재하된 Hydrotest에서는 충수 후 장기침하거동이 발생하여 시험성토의 침하거동과는 상이한 결과를 나타내었다. 따라서 현장 Sabkha층에 입자파쇄하중 이상의 하중이 재하될 경우 입자파쇄로 인한 즉시침하와 파쇄된 입자의 재배열로 인한 이차압축침하가 발생됨을 알 수 있었다.

Keywords

References

  1. API 650.(2007), Welded tanks for oil storage, Eleventh Edition, American Petroleum Institute, Washington, U.S.A., pp. 7-7.
  2. Coop, M. R.(1990), The mechanics of uncemented carbonate sands, Geotechnique Vol. 40, No. 4, pp. 607-626. https://doi.org/10.1680/geot.1990.40.4.607
  3. Golightly, C. R. and Hyde, A. F. L.(1988), Some fundamental properties of carbonate sands, International Conference on Calcareous Cediments, Perth, Australia, Vol. 1, pp. 173-184.
  4. Ismael, N. F.(1993), Laboratory and field leaching tests on coastal salt-bearing soils, Journal of Geotechnical Engineering, Vol. 119, Issue, 3, pp. 453-470. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:3(453)
  5. Kwag, J. M., Ochiai, H. and Yasufuku, N.(1999), Yielding stress characteristics of carbonate sand in relation to individual particle fragmentation strength, Engineering for Calcareous Sediments, Balkema, Rotterdam, pp. 79-86.
  6. Lee, K. L. and Seed, H. B.(1967), Drained strength characteristics of sands, Journal of the Soil Mechanics and Foundations Division, Vol. 93, No. 6, pp. 117-141.
  7. Lee, K. L. and Farhoomand, I.(1967), Compressibility and crushing of granular soil in anisotropic triaxial compression, Canadian Geotechnical Journal, Vol. 4, No. 1, pp. 68-86. https://doi.org/10.1139/t67-012
  8. Miura, N. and O-hara, S. N.(1979), Particle crushing of a decomposed granite soil under shear stresses, Soil and Foundations, Vol. 19, No. 3, pp. 1-14.
  9. Terzaghi, K., Peck, R. B. and Mesri, G.(1996), Soil mechanics in engineering practice 3rd Edition, John Wiley and Sons, New York, pp. 161-208.