# 프리텐션 콘크리트 거더 전산해석

Computational Analysis of Pre-Tensioned Concrete Girders



강 현 구\*

\*서울대학교 건축학과 교수 \*\* 금오공과대학교 건축학부 교수

# 1. 서 론

콘크리트가 압축(Compression)에 강하고 인장(Tension)에 약하다는 사실은 널리 알려져 있으며 이러한 콘크리트의 낮은 인장력으로 인해 하중의 초기단계(Early stage)에서 휨 균열(Flexural cracking)이 발생한다. 이러한 균열이 진전되 는 것을 줄이거나 막기 위해 구조 요소(Structural element) 의 주인장방향(Longitudinal direction)으로 집중하중이나 편 심하중을 적용시키는데 이와 같은 힘에 의해 사용 하중시 (@Service load) 구조 요소의 중앙부나 지점부위에서의 인 장응력(Tensile stress)을 제거하거나 크게 줄임으로써 균열 이 진전되는 것을 막아준다. 이와 같이 주인장방향으로 부 과되는 힘을 긴장력(Prestressing force)이라고 하는데 이를 적용한 프리텐션(Pre-Tensioned) 콘크리트는 일반적으로 강 선 등을 여러 줄로 겹쳐 만든 강연선이라는 강재 보강근에 인장응력을 미리 부과해서 외부 작용하중에 저항함으로써 그 특성을 향상시킨 구조로서 주로 초고층빌딩, 장대교량, 주차장, 원자력 격납구조물(Reactor containment structures) 등 건축·토목분야에서 폭 넓게 사용되고 있다.

따라서 본고에서는 4개의 축소된(Reduced-scale) 거더와 1개의 실제 크기(Full-scale) AASHTO Type-II 교량 거더<sup>1)</sup>로 구성된 총 5개의 프리텐션 콘크리트 거더의 휨실험결과와



그림 1 OpenSees(2006)<sup>2)</sup>



그림 2 ANSYS(2007)<sup>3)</sup>

전산해석결과를 비교·분석하였다. 실험결과의 신뢰성을 검 증하기 위해 사용된 전산해석 프로그램은 2차원 모델링을 위해 그림 1과 같은 OpenSees<sup>21</sup>가 사용되었고 3차원 모델링 을 위해 그림 2와 같은 ANSYS<sup>31</sup>가 사용되었다. 이를 통해 프리텐션 콘크리트 거더를 전산 해석하는데 있어 그 방법 론을 제시하고자 한다.

## 2. 프리텐션 콘크리트 거더의 실제 휨실험

#### 2.1 실험계획

거더 길이 5.2m인 4개의 축소된 콘크리트 거더는 단위중 량 1,840kg/m<sup>3</sup>인 경량콘크리트를 사용하였으며 단면형태와 강섬유의 보강(강섬유혼입량=40kg/m<sup>3</sup>) 유무에 따라 각각 *R1*, *R2*, *I1*, *I2*로 명명하였다. 거더길이 7.5m인 실제크기 AASHTO Type-II 교량 거더(*G1*)는 단위중량 1,840kg/m<sup>3</sup>인 보통중량 콘크리트를 사용하였으며 단면 및 실험체 상세는 그림 3, 그림 4와 같다.

#### 2.2 실험결과

실험결과 초기하중단계에서는 어떠한 균열도 보이지 않 았고, 하중이 증가하면서 인장 지역(Tensile region)인 중앙 부 하단(@Bottom-fiber)에서 미세한 균열이 관찰되었다. 하 중이 증가함에 따라 균열수 역시 증가하면서 중앙부를 중심 으로 해서 지점으로 퍼져나갔으며 휨균열은 중앙부 하단에 서 상부로 지속적으로 진행되었다. 그 후 비선형 거동이 관 찰되면서 모든 거더는 하중점 근처에서 상부면(@Top-fiber) 의 콘크리트 파괴에 의해 최종적으로 휨파괴(Flexural failure)되었다(그림 5). 표 1은 실험결과 중 프리텐션 콘크 리트 거더의 하중에 따른 변위의 관계를 나타낸 것이다.

## 3. 프리텐션 콘크리트 거더의 전산해석

이전 장에 기술된 실험을 전산해석하기 위해 OpenSees와 ANSYS 프로그램을 사용하여 각각 2차원 및 3차원 모델링 을 통한 유한요소해석을 수행하였다. 다음과 같은 세가지





그림 4 2차원 유한요소모델에 따른 프리텐션 거더의 입면



그림 5 중앙부의 균열 패턴(R1 거더)

조건의 분석을 통해 실험결과와 전산해석 결과를 상호 검증 하였다.

(1) 하중-중앙부 처짐 관계(@ 초기균열 및 최종 하중단계)(2) 하중-상·하부 응력 관계

(3) 전이단계와 최대하중단계에서의 응력분포

#### 3.1 2차원 비선형 유한요소 모델링

그림 6은 세 가지 다른 유형의 2차원 비선형 유한요소 모델을 나타낸 것으로 각 모델은 Eight forced-based nonlinear beam-column elements에 의해 연결된 9개 절점(Node)로 구성되어 있는데 이러한 절점(Node)은 변위계가 설치되어 있는 지점(Support)에 위치시켰다. 절점의 자유도(Degrees of freedom[DOF])는 x축 및 y축에 따라 두 가지 이동단

표 1 실험결과

|           | Ĕ            | 위             | 하중           |               |  |
|-----------|--------------|---------------|--------------|---------------|--|
| I.D.      | @첫균열<br>(mm) | @최대하중<br>(mm) | @첫균열<br>(kN) | @최대하중<br>(kN) |  |
| R1        | 9.4          | 104.6         | 56.8         | 112.9         |  |
| R2        | 12.2         | 137.4         | 64.7         | 121.6         |  |
| <i>I1</i> | 16.8         | 38.6          | 93.2         | 103.3         |  |
| I2        | 14.0         | 51.1          | 89.1         | 137.2         |  |
| G1        | 7.6          | 37.1          | 856.2        | 1329.2        |  |

(Translation), z축에 대해 하나의 회전단(Rotaion)으로 구성되 어 있다. 각각의 요소는 Gauss-Lobatto 직교(Quadrature) 방식 에 따라 할당된 적분점(Integration point)을 포함한 다섯 가 지 Fiber 단면으로 구성된다(그림 6).

콘크리트 Fiber는 폐쇄 스터럽을 고려한 구속 콘크리트와 비구속 콘크리트의 두 부분으로 나뉘어져 있다. 그림 6에서 보이듯 콘크리트와 철근의 Fiber 구성 관계는 OpenSees에 서 구현된 일축 재료 모델을 사용하였다. 그림 6에서 빈 원 은 강연선의 Fiber를 나타낸 것이고 검은색 원은 철근을 나 타낸 것이다. 삼선형(Tri-linear) 응력-변형률 관계는 본 연구 에서 사용된 긴장재를 해석하기 위해 PCI 디자인 핸드북<sup>4)</sup> 에서 제안된 곡선에 따라 가정하였다.

모델링에 사용된 재료 변수는 표 2에 나타나 있고 회전 단과 이동단은 각각 그림 6의 N2와 N8절점에 적용하였다. 부재자중(w<sub>d</sub>)은 콘크리트의 단위중량에 따라 각각 축소된



그림 6 OpenSees를 이용한 2차원 모델링에서 Fiber 단면의 이산화 도식(단위: 1in.=25.4mm; 1ksi=6.89MPa)



그림 7 G1 거더 부재의 3차원 유한요소 모델

| <u> </u> |                                               |                            |                                         |                       |  |  |  |  |
|----------|-----------------------------------------------|----------------------------|-----------------------------------------|-----------------------|--|--|--|--|
| 콘        | 크리트                                           | 경량<br>( <i>R1&amp;11</i> ) | 경량<br>&강섬유<br>( <i>R2</i> & <i>12</i> ) | 보통중량<br>( <i>G1</i> ) |  |  |  |  |
|          | $f'_{cc} = 1.3f'_{c}$                         | 53.4MPa                    | 70.3MPa                                 | NA                    |  |  |  |  |
|          | $\varepsilon_{cc0} = 2f'_{cc}/E_c$            | 0.0064                     | 0.0079                                  | NA                    |  |  |  |  |
| 구속       | $f_{ccu} = 0.2f'_{cc}$                        | 10.7MPa                    | 14.1MPa                                 | NA                    |  |  |  |  |
| 콘크리트     | $\varepsilon_{ccu} = 5\varepsilon_{cc\theta}$ | 0.0322 0.0396              |                                         | NA                    |  |  |  |  |
|          | EC                                            | 16,579MPa                  | 17,772MPa                               | NA                    |  |  |  |  |
|          | $f_r = 7.5 \sqrt{f'_{cc}}$                    | 4.6MPa                     | 5.2MPa                                  | NA                    |  |  |  |  |
|          | f'c                                           | 41.1MPa                    | 54.1MPa                                 | 41.4MPa               |  |  |  |  |
|          | $\mathcal{E}_{c\ \theta}$                     | 0.0034                     | 0.0042                                  | 0.003                 |  |  |  |  |
| 비구속      | $f_{cu} = 0.2f'_{c}$                          | 8.2MPa                     | 10.8MPa                                 | 8.3MPa                |  |  |  |  |
| 콘크리트     | $\varepsilon_{cu} = 5\varepsilon_{c0}$        | 0.01                       | 0.01                                    | 0.01                  |  |  |  |  |
|          | $E_c$                                         | 16,579MPa                  | 17,772MPa                               | 30,448MPa             |  |  |  |  |
|          | $f_r = 7.5 \sqrt{f'_c}$                       | 4MPa                       | 4.6MPa                                  | 5.8MPa                |  |  |  |  |
| 철근       |                                               |                            |                                         |                       |  |  |  |  |
|          | $f_y$                                         | 414MPa                     |                                         |                       |  |  |  |  |
| SD400    | $E_s$                                         | 200,000MPa                 |                                         |                       |  |  |  |  |
|          | α                                             | 0.005                      |                                         |                       |  |  |  |  |
| 강연선      |                                               |                            |                                         |                       |  |  |  |  |
|          | f <sub>pu</sub>                               | 1862MPa                    |                                         |                       |  |  |  |  |
| 가여서      | $f_{py} = 0.96 f_{pu}$                        | 1788MPa                    |                                         |                       |  |  |  |  |
| 0 ťť     | Eps                                           | 196,552MPa                 |                                         |                       |  |  |  |  |
|          | $\alpha$                                      | 0.005                      |                                         |                       |  |  |  |  |

표 2 2차원 모델링에 사용된 재료 변수

거더는 1.5kN/m, 실제 크기의 거더는 5.7kN/m의 등분포하 중(w<sub>d</sub>)으로 계산하였다. 프리스트레싱 효과는 영이 아닌 (Non-zero) 강연선의 초기 응력으로 가정하였다. 긴장력은 R형, I형 거더와 G1 거더에 대해 양단으로부터 각각 152mm, 610mm, 356mm 거리에서 완전히 부착된 것으로 가정하였으 며 철근 단면은 부재단면에서의 전달 길이(Transfer length)를 고려하였다.

휨 응답은 두가지 Loadstep 해석을 통해 시뮬레이션 하 였는데 첫 번째 Loadstep은 부재자중(@d)과 긴장력이 적용 될 때 하중(힘)제어하였다. 비선형 거동을 위한 두 번째 변 위제어된 Loadstep은 규정된 하향(Downward) 변위와 *R1*, *R1*, *I1*, *I2* 거더에서 N5절점 그리고 *G1* 거더에서 N4, N6절 점에 단위절점하중이 적용되었다(그림 4). 이 단계에서는 *R*형, *I*형 거더와 *G1* 거더에 대해 각각 140mm, 75mm, 50mm의 목표(Target) 변위를 달성하기 위해 5,000 하위 단계(Substeps)로 수행되었다. 평형해(Equilibrium solutions)는 0.1% 의 에너지기반 수렴 허용오차의 L2-norm을 포함한 Newton-Rapson method(뉴턴-랩슨법)을 사용하여 반복적으로 수행 하였다.

#### 3.2 3차원 비선형 유한요소 모델링

3차원 비선형 유한요소 해석은 ANSYS를 사용하여 수행 하였다. *G1* 거더의 연속체(Continuum) 유한요소 모델은 그 림 7에 나타나 있다. 전산해석을 효율적으로 하기 위한 일 환으로 계산 리소스를 최소화하기 위해 그림 7과 같이 두 개의 횡방향 평면에 대칭되는 실제 부재의 1/4만 모델링하 였다. 또한 이산화된 모델링 방법에서 철근요소의 메쉬와 콘크리트 요소의 절점을 함께 공유하였다. 즉 철근은 그림 7에서와 같이 선요소로 취급되며 실제 부피를 차지하지는 않는 것으로 가정하였다(Link8; ANSYS, 2007).

콘크리트와 철근은 0.15와 0.3의 프아송비를 가진 등방성 (Isotropic) 재료로 다루어 졌다. 콘크리트와 강재로 된 하중 판은 Brick 요소를 사용하여 모델링하였다(각각 Solid 65, Solid 45). 이러한 요소는 세 개의 이동(Translational) 자유도 (DOF)와 연관된 8개의 절점을 가지고 있다. 콘크리트, 철근 과 강연선의 구성 모델은 그림 8에 나타나 있는데 그 중 거 더의 비구속 콘크리트 모델은 재료실험 결과를 토대로 하 였다.

구속된 콘크리트에서 별도로 고려될 필요가 있는 2차원 모델링과는 달리 이러한 조건은 3차원 모델링에서는 필요 가 없다. 이것은 삼축 응력하에서의 콘크리트 거동이 3차원 모델링에서는 자연스럽게 구속(Confinement)상태로 내재되 어 있기 때문이다.

하중플레이트와 지점 플레이트는 하중이 재하되는 동안 탄성상태로 가정하였다. 그림 8과 같이 철근은 이차 선형 (Bi-linear) 구성 관계인 것으로 가정하였으며 강연선의 비 선형 응력-변형률 관계로 PCI 디자인 핸드북<sup>4)</sup>을 참조로 하 였다.

보다 실제에 가까운 근사해석을 위해 특히 주의를 요하는 것은 응력 집중현상이 일어나는 하중 플레이트내 주요 영

|          | R1 & R2 |      | I1 & I2 |        |       | G1   |        |      |     |
|----------|---------|------|---------|--------|-------|------|--------|------|-----|
|          | Qt.     | 요소크기 |         | 0      | 요소크기  |      | 0.     | 요소크기 |     |
|          |         | 최소   | 최대      | Qi.    | 최소    | 최대   | Qi.    | 최소   | 최대  |
| Node     | 4,530   | NA   | NA      | 17,480 | NA    | NA   | 21,244 | NA   | NA  |
| SOLID 65 | 3,300   | 0.5  | 2       | 13,860 | 0.174 | 2.75 | 17,025 | 0.5  | 2.4 |
| SOLID 45 | 105     | 0.25 | 1       | 384    | 0.25  | 1.5  | 198    | 0.33 | 1   |
| LINKS    | 495     | 0.5  | 2       | 533    | 0.174 | 2.75 | 2,700  | 0.5  | 2.4 |

표 3 3차원 모델링에 명시된 절점과 요수 수





그림 9 G1 거더의 하중-중앙부 처짐 관계 및 다양한 하중단계에서 시뮬레이션된 균열 패턴

| I.D.      |          | $\delta_{i}, \mathrm{mm}$ | P <sub>cr</sub> , kN | $\delta_{cr,}$ mm | Pu, kN | $\delta_{\!u\!},  { m mm}$ |
|-----------|----------|---------------------------|----------------------|-------------------|--------|----------------------------|
| R1        | Test     | NA                        | 56.7                 | 9.4               | 112.6  | 104.6                      |
|           | 2D model | -2.8                      | 41.1                 | 4.8               | 112.1  | 105.2                      |
|           | 3D model | -3.3                      | 44                   | 6.35              | 115.4  | 79.8                       |
|           | Test     | NA                        | 64.5                 | 12.2              | 121.3  | 137.4                      |
| R2        | 2D model | -3                        | 47.2                 | 5.1               | 116.1  | 133.4                      |
|           | 3D model | -3.6                      | 51.6                 | 6.9               | 117.7  | 68.8                       |
| <i>I1</i> | Test     | NA                        | 93.2                 | 16.8              | 103.2  | 38.6                       |
|           | 2D model | -8.9                      | 71.6                 | 11.4              | 140.1  | 46.2                       |
|           | 3D model | -7.6                      | 75.5                 | 14.5              | 110.3  | 32.3                       |
|           | Test     | NA                        | 88.9                 | 14                | 137    | 51.1                       |
| I2        | 2D model | -9.7                      | 82.7                 | 12.4              | 145.3  | 50.8                       |
|           | 3D model | -7.9                      | 88.8                 | 15.5              | 138.8  | 42.9                       |
| <i>G1</i> | Test     | NA                        | 854                  | 8.6               | 1326   | 37.1                       |
|           | 2D model | -3.6                      | 813                  | 7.1               | 1317   | 31                         |
|           | 3D model | -2.8                      | 746                  | 7.1               | 1316   | 35.1                       |

표 4 실험결과와 전산해석결과

 $\delta_i$ =초기 켐버;  $P_{\alpha}$ =균열발생시 하중;  $\delta_{cr}$ =균열발생시 변위;  $P_{u}$ =최대하중;  $\delta_{u}$ =최대하중시 변위

역으로 메쉬를 보다 작게 나눌 필요가 있다는 것이다. 해당 모델링 순서는 다음과 같다.

- (1) 콘크리트, 강재 플레이트, 철근 전체를 개별적으로 생 성시킴.
- (2) 철근요소의 절점은 정확하게 일치하는 위치에 있는 콘크리트 요소의 절점과 공유함.
- (3) 유한요소 모델을 생성시키기 위해 솔리드 요소 전체 를 메쉬(Mesh)로 나눔.
- (4) 어떤 홀로 떨어진 절점이 있다면 도메인(Domain)내 일치하는 절점을 복원할 것.
- (5) 일치하는 절점을 병합함.

표 3은 모델링 도메인에 지정된 절점과 요소 수 및 최소· 최대 크기를 요약한 것이다.

x축 및 Z축에서 수직인 두 평면에 대한 중앙부 단면에서 의 경계조건(Boundary condition)은 그림 7에 나타나 있다. 가로방향 자유도(U<sub>z</sub>=0)가 부재 길이에 따라 우측 면에 대한 절점이 0으로 놓이는 동안 절점의 모든 세로방향 자유도 (DOF)는 고정되어 있다(즉, U<sub>x</sub>=0). 또한 이동단(U<sub>y</sub>=0)은 지 점 플레이트의 중심선을 따라 절점으로 작용한다.

2차원 모델링에서 프리스트레싱 효과를 위해 강연선에서 초기 응력이 0이 아닌 것으로 지정하고 전달 길이를 고려 하였다. 축소된 거더의 경우 등분포하중이 하중 플레이트 의 표면 전체에 걸쳐 작용한다고 가정하였다. 즉, 요소하중 (또는 압력)이 사용되었다.

액츄에이터 하중을 적용하기 전 하중-제어 해석은 비선 형 변위-제어 해석에 따른 작은 변위의 가정하에서 수행되 었다. 2차원 해석과 마찬가지로, 3차원 해석 역시 두 가지 주요 단계가 있는데 전이역에서의 응력 상태는 첫 번째로 시뮬레이션 한 후, 하중-처짐 응답의 전체 평형 경로는 균 열과 항복단계 및 최대하중단계을 포함해서 모두 구해졌 다. 또한 평형 방정식은 Newton-Rapson method(뉴턴-랩슨 법)을 사용하여 반복적으로 수행하였고 면외균형 하중(힘) 과 변위의 L2-norm은 수렴 조건에 대해 검토하였다.

### 3.3 전산해석결과와 실험결과

균열 및 콘크리트 압축파괴(최종)단계에서 적용된 하중 과 그 때의 변위를 표 4에 나타내었다. 아울러 하중과 중앙 부 수직 변위에 대한 *G1* 거더의 2차원 및 3차원 전산해석 결과는 실험결과와 비교하여 그림 9에 나타내었고 여러 단 계에서 시뮬레이션된 균열 패턴을 보여주는 단면 역시 그 림 9에서 확인할 수 있다. 하중에 의한 변위(처짐)값은 중 앙부 좌우에 설치한 변위계에 의해 측정된 값의 평균값으 로 정하였다(그림 4). 이러한 데이터는 N5 절점에서의 2차 원 전산해석결과에 따른 변위(그림 6) 및 3차원 전산해석을 통한 전체 단면폭에 걸친 중앙부하단 절점 변위의 평균값 과 비교하였다. 이 때 변위(처짐)는 긴장력과 자중 적용의 첫 번째 Loadstep에서 산출되는 초기 캠버(Camber)가 상대 적이라는 것에 주목해야 한다(즉, 하중이 적용되기 전 초기 위치의 처짐이 0으로 동일하게 설정되었음).

전반적으로 실험결과와 전산해석결과는 비교적 잘 일치 한다. 또한 비선형거동과 최대하중을 비교·예측하는데 있 어 2차원 및 3차원 모델링 결과는 서로 잘 일치한다는 것 을 확인할 수 있었다.

# 4.결론

본 고에서는 총 5개의 프리텐션 콘크리트 거더의 휨실험 결과를 비선형 유한요소 Software인 OpenSees를 통한 2차 원 모델링 및 ANSYS를 통한 3차원 모델링 전산해석결과 와 비교·분석하여 실험결과의 신뢰성을 검증하였고, 그 전 산해석 방법에 대해서도 고찰하였다.

분석결과 실험결과와 전산해석결과는 비교적 잘 일치하 며 비선형거동과 최대하중을 비교·예측하는데 있어 2차원 모델링 및 3차원 모델링 결과는 서로 비교적 잘 일치한다 는 것을 확인할 수 있었다.

하지만 프리텐션 거더 재료의 비선형 특성을 일반화하는 데 있어 아직 그 데이터베이스가 상당히 부족하기에 이에 관한 추가 연구를 통해 일반화할 수 있는 프레텐션 콘크리 트 거더의 재료모델 정립이 필요하다고 판단된다.

## 참 고 문 헌

- AASHTO (2007) LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, DC.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006) Open System for Earthquake Engineering Simulation (OpenSees) User Command-Language Manual - Version 1.7.3. University of California, Berkeley, CA.
- ANSYS (2007) ANSYS Software and Manual, ANSYS Inc., PA.
- PCI (2004) PCI Design Handbook, Precast/Prestressed Concrete Institute, IL.

[담당 : 강현구 편집위원]