DOI QR코드

DOI QR Code

Wideband Receiver Module for LADAR Using Large Area InGaAs Avalanche Photodiode

대면적 APD를 이용한 LADAR용 광대역 광수신기

  • Received : 2012.11.26
  • Accepted : 2013.01.03
  • Published : 2013.02.25

Abstract

In this paper, we report design, fabrication and characterization of the WBRM (Wide Band Receiver Module) for LADAR (LAser Detection And Ranging) application. The WBRM has been designed and fabricated using self-made APD (Avalanche Photodiode) and TIA (Trans-impedance Amplifier). The APD and TIA chips have been integrated on 12-pin TO8 header using self-made ceramic submount and circuit. The WBRM module showed 450 ps of rise time, and corresponding 780 MHz bandwidth. Furthermore, it showed very low output noise less than 0.8 mV, and higher SNR than 15 for 150 nW of MDS(Minimum Detectable Signal). To the author's knowledge, this is the best performance of an optical receiver module for LIDAR fabricated by 200 um InGaAs APD.

본 논문에서는 3차원 영상을 위한 LADAR(LAser Detection And Ranging)용 광검출기 모듈을 설계-제작하고 그 특성을 측정한 결과를 보고한다. 광검출기 모듈은 광파이버 어레이와 접속될 수 있도록 200 um 직경을 갖는 InGaAs APD(Avalanche Photodiode)로 설계-제작하였으며, 선형모드 동작 특성을 만족하도록 TIA(Trans-impedance Amplifier)를 설계-제작하였다. 광검출기 모듈을 구성하는 핵심부품들은 12개의 lead pin을 갖는 TO8 상에 집적되었으며, 집적에 필요한 APD 서브마운트 및 TIA 회로 등을 자체적으로 설계-제작하여 사용하였다. 제작한 광검출기 모듈은 450 ps의 rising time과 780 MHz의 대역폭 특성을 보였으며, 0.8 mV 이하의 잡음 특성과, 150 nW의 MDS(Minimum Detectable Signal) 신호 크기에 대해 15 이상의 신호대 잡음비(SNR)를 보임으로써 설계한 모든 특성을 만족하였는데, 이는 저자들이 아는 한 200 um 직경의 대면적 InGaAs APD를 이용한 광수신기에서 가장 우수한 특성을 나타낸 것이다.

Keywords

References

  1. http://en.wikipedia.org/wiki/LIDAR.
  2. http://en.wikipedia.org/wiki/Time-of-flight_camera#cite_note-16.
  3. http://www.advancedscientificconcepts.com/products/overview.html.
  4. M. Juberts and A. Barbera, "Status report on next generation LADAR for driving unmanned ground vehicles," Proc. SPIE 5609, 1-12 (2004).
  5. R. Sudharsanan, P. Yuan, J. Boisvert, P. McDonald, T. Isshiki, S. Mesropian, E. Labios, and M. Salisbury, "Single photon counting geiger mode InGaAs(P)/InP avalanche photodiode arrays for 3D imaging," Laser Radar Technology and Applications XIII, M. D. Turner and G. W. Kamerman, ed., Proc. SPIE 6950, 69500N (2008).
  6. R. M. Marino, T. S. Stephenes, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, "A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements," Laser Radar Technology and Applications VIII, G. W. Kamerman, ed., Proc. SPIE 5086, 1-15 (2003).
  7. http://velodynelidar.com/lidar/lidar.aspx.
  8. T. H. Ngo, C. H. Kim, Y. J. Kwon, J. S. Ko, D. B. Kim, and H. H. Park, "Wideband receiver for a three-dimensional ranging LADAR system," to be published in IEEE Transactions on Circuit and System II (2012).
  9. C. Y. Park, K. S. Hyun, J. S. Kim, S. G. Kang, M. K. Song, E. S. Nam, and H. M. Kim, "Analysis of avalanche gain with multiplication layer width and application to floating guard ring avalanche photodiode," Inst. Phys. Conf., Ser. No145: Compound Semiconductors 1995, J. C. Woo and Y. S. Park, ed. (IOP Publishing Ltd., Bristol and Philadelphia, 1995), pp. 1125-1128.
  10. C. Y. Park, K. S. Hyun, S. G. Kang, and H. M. Kim, "Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode," Appl. Phys. Lett. 67, 3789-3791 (1995). https://doi.org/10.1063/1.115384
  11. K. S. Hyun and C. Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997). https://doi.org/10.1063/1.364225
  12. S. R. Forrest, "Avalanche photodetector receiver sensitivity," Chapt. 4 in Semiconductors and Semimetals, 22 part D, W. T. Tsang, ed. (Academic press, Homdel NJ, USA, 1985).