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ABSTRACT

High speed rotor systems with magnetic bearings have been the subject of much research in recent years due 
to the potential for active vibration control. In this thesis, optimal design was conducted for an 8-pole 
heteropolar magnetic bearing used in the flexible rotor of a turbo blower. In connection with bearing stiffness, 
this optimal design process was conducted using a genetic algorithm(GA), which is based on natural selection 
and genetics. The maximum stiffness of the magnetic bearing-rotor was found by considering the critical speeds 
of the flexible rotor. As a result, the magnetic bearings were optimized to have maximum stiffness.
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1. Introduction

Modern technology in rotating machinery trends 
towards high-speed, high-precision and high-efficiency. 
A turbo blower used to produce highly compressed 
air in industries is typical of such rotating machinery. 

It is essential to have lots of studies of the 
technology elements that are related to achieving high 
turbo blower efficiency.

The high speed rotor system with magnetic 
bearings has been the subject for numerous 
researches in recent years due to its potential for 
active vibration control. Also, while relatively 
expensive compared to other bearings, the magnetic 
bearing has a semi-permanent lifespan because it 
makes no physical contact, making lubrication 
unnecessary, and operates over a wide range of 
temperature and automatic balancing[1-4].
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Fig. 2 Critical speed map

Fig. 1 A simple model for a magnetic 
bearing-rotor

Typically, the nonlinearity represents the material 
properties of the electromagnet. The error that occurs 
in the linearization will be compensated at the level 
of the designed controller[5]. 

So, most magnetic bearings have been modeled by 
linearized governing equations. Optimization may be 
required for designing the magnetic bearing due to 
its many design variables and constraints[6-7].

Optimal designs for magnetic bearing have been 
focused on maximizing magnetic force until now. 
Although optimization for maximizing the stiffness of 
magnetic bearing are needed to be overcome lack of 
stiffness, one of disadvantages of magnetic bearing, 
no research has been reported for the optimal design 
of the stiffness.

This paper derives equations for the stiffness of 
magnetic bearing and establishes the optimization 
problem with defining object function and constraints 
for maximize the stiffness and then finds the optimal 
variables using a genetic algorithm(GA).

2. Theory

2.1 Critical speed analysis
Figure 1 shows a magnetic bearing-rotor system 

that includes the disk. For this model, a critical 
speed analysis of the rotor system was performed to 
determine how bearing stiffness was affecting the 
high speed stability. A critical speed analysis are 
cited from the method published by Jo et al.[8].

Figure 2 is a graph of the critical speed analysis 
results, showing the relation between bearing stiffness 
and natural frequency. As shown in the graph, at the 
rated operating speed of 25,000 rpm, it can be seen 
that the first mode and second mode do not overlap 
bearing stiffness ranges. Based on the results from 
the rated operating speed of 25,000 rpm, the bearing 
stiffness can be designed to avoid the critical speed 
range. We select the last value of magnetic bearing 
stiffness at a rated operating speed of 25,000 rpm. 

The procedure is explained in the next chapter.

2.2 Equations for stiffness of magnetic 
bearing design

The basic equations (1) to (7) for designing a 
radial magnetic bearing are cited from the equations 
stated by Kim et al.[9].

A typical 8-pole (N–S–S–N–N–S–S–N) heteropolar 
magnetic bearing, shown in Figure 3, is equipped for 
a shaft of radius, . Design variables, which are the 

width of the pole leg, , the height of the pole 

leg, , and the axial length of the pole leg,  are 

defined as numbers randomly generated within 
reasonable limits by applying GA. 

The number of coil turns wrapped around each 
pole,  is defined as. 

     × × (1)
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Fig. 4 B-H curve for silicon steel

(a) 8 pole heteropolar magnetic bearing

(b) N-S pole

Fig. 3 Schematics of magnetic bearing

where the packing factor,  to be applied is 0.7.  
 and  which represent the number of coils 
along the height of the bobbin, and along the width 
of the bobbin, respectively, are calculated as

   ×

 ×  (2)

   ×

   tan


 

  (3)

where the angle between two consecutive poles,  
  is 45°.   and  represent the radius of wire 

with insulation and the thickness of the bobbin, 

respectively. The outer diameter of magnetic bearing, 
 is defined as 

    ×  (4)

The upper and lower bias current,   and  , are 

calculated from the magnetic flux densities at the  
 point and the   point in the region is assumed 

to be linear as shown in Figure 4.

  

 ,  

 (5)

where  and  represent the nominal radial 

clearance and the correction factor (=1.2), 
respectively, and  is the magnetic permeability of 

free space.
Total rotor power loss in the magnetic bearing 

suggested by Kasarda[10],  occurs due to both 

winding effects and iron power losses which are 
expressed as

        (6)

where   is eddy current power loss,  is 

alternating hysteresis power loss per cycle for one 
rotor lamination stack,   is rotational hysteresis 

loss, and  is the windage losses due to air 

friction. 
The heat generated in the coil is the same as the 

heat produced by convection in the coil surface[11]. 
Therefore the maximum temperature in the coil,  
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Fig. 5 A magnetic bearing-rotor system

is

   

  
∞ (7)

The where  is the convection factor of air.  

is the coil cross-section area,   is the coil 
resistance, and ∞ is the temperature, in the 

atmosphere. 
The position stiffness and the current stiffness 

equations (8) to (9) for a radial magnetic bearing are 
stated by Kelm et al.[12]. The , position stiffness 

of the magnetic bearing is the change of the vertical 
force by small disturbance in the vertical 
displacement, and is defined as shown in equation 
(8).

   





cos

 
 

     (8)

The , current stiffness, of the magnetic bearing  
is as shown in equation (9).

   





cos  

(9)

As shown in Fig. 5, the positions of the sensor 
and the magnetic bearing. are different. It should be 
compensated to exactly calculate the stiffness of a 
magnetic bearing. A proportional-derivative controller 
is used to get the good performance. The magnetic 
bearing stiffness, considering the position difference 
and controller's gains,   is calculated as: 

    


 · ··


      (10)

where, 
 : gain of the power amplifier 

 : proportional gain of the controller 

 : time-constant of derivative gain 

 : sensitivity of sensor 
 : distance between centers of bearings 

 : distance between sensor and the center of 

the back bearing 

Each controller has applied the values provided by 
the manufacturer,   ,   ,   , 

    and we calculated the magnetic 
bearings stiffness to levitate the rotor. The distance 
ratio between the sensor and the magnetic bearings is 

approximate 1.045. By adding position stiffness  
using linear magnetic field analysis, magnetic bearing 
stiffness values are derived as Eq. (11)

              (11)

3. Optimal design for the magnetic 
bearing using a GA

3.1 Optimization problem establishment 
The optimization problem established in this study 

is to find the design variables which maximize the 
magnetic bearing-rotor stiffness,  , while 

satisfying the performance limits and the geometric 
constraints. 

The constraint conditions are to: (a) restrict the 
outer diameter of the magnetic bearing to 0.214 m 
considering the total outer diameter of the high speed 
machine tools; (b) restrict the energy loss to 500 W 
at maximum rotating speed, 25,000 rpm; (c) limit the 
maximum temperature in the coil to 85℃ to avoid 
damaging the film of the coil; (d) wrap the wire 
over 10 floors at the bottom of the bobbin so that 
one pole does not interfere with the adjacent pole 
and the number of coil turns is sufficiently assured. 
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The optimization problem is summarized as:

            (11) 

   ≤   ,  ≤   ,

   ≤  ,  ≥          (12)

3.2 Design variables 
Three design variables are selected with geometric 

variables including the axial length of the magnetic 
bearing, , the height of the pole leg, , and the 

width of the pole leg, . In an optimal design by 

GA, each design variable is given by a set of 
selectable values and then each value is decoded to a 
binary code. It is, therefore, necessary to determine 
the selectable values in the range of design for each 
variable. The axial length of pole may be determined 
to be about 16.0 - 28.0 mm due to the restriction of 
the installing space considering the axial lengths of 
both shaft and built-in motor. The height of the pole 
may be about 20.0 - 32.0 mm considering the limit 
of the outside diameter of the bearing. The width of 
the pole may be given to be around 14.0 - 26.0 mm 
because of the geometric constraint for the bearing. 

The design variables in this investigation are 
summarized as:

     ≤  ≤           

     ≤  ≤          (13)

     ≤  ≤  

Since the limits of the design variables have been 
determined, the chromosome lengths having 
information for the design variables should be 
determined as a number of bits. The chromosome 
lengths of five design variables, i.e. ,  and  

are assigned in 7, 7, 7 bits, respectively. So the total 
length of a chromosome is 21 bits.

3.3 Fitness evaluation

The optimization problem established in this article 
as equation (12) is a typical constrained optimization 
problem. Since genetic operators used to manipulate 
the chromosomes often yield infeasible offspring, the 
major concern for applying GA to the constrained 
optimization is how to handle constraints. 

The penalty technique is often used to handle 
infeasible solutions. In essence, this technique 
transforms the constrained problem into an 
unconstrained problem by penalizing infeasible 
solutions by constructing an evaluation function called 
the fitness, which is the objective function added to 
a penalty term for any violation of the constraints. 

Therefore the optimization problem is transformed 
to an unconstrained optimization problem by defining 
the fitness as: 

                 (14)

    

 × ,       (15)

    

  × ,           (16)

    

  × ,            (17)

    

 × ,             (18)

where  is the object function and  is the 

penalty term for th constraint. The  is a 

non-dimensional weighting factor added to handle 
infeasible solutions. In this article,   in all of 

the constraints are identical and variable  are 

applied as generations proceed: 20% for 1 through 
15 generation, 50% for 16 through 30 generation, 
70% for 31 through 45 generation, and 80% over 46 
generation.

3.4 Optimal design procedure
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Fig. 6 Flowchart for optimal design of the 
magnetic bearing with GA

Fig. 7 Bearing stiffness in each generation

(a) Length of pole

(b) Height of pole

(c) Width of pole

Fig. 8 Optimal design value in each generation

The optimal design procedure of the magnetic 
bearing with GA is shown in the Figure 6. Optimal 
values are obtained when the fitness values are 
saturated, i.e. converged through iteration with zero 

penalty value.

4. Results and review

4.1 Optimization of bearing stiffness
Figure 7 shows the optimization results using GA, 

which represent the maximum bearing stiffness. When 
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Design   
Variables   

Optimal 
design values 0.0280 m 0.0298 m 0.0253 m

Max. bearing 
stiffness 30.6 MN/m

Table 1 Optimal configurations

the generation is increased, the bearing stiffness is 
increased in the direction of evolution. The optimal 
bearing stiffness by linear analysis, 30.6 MN/m, is 
obtained. The design variables search globally in the 
infeasible area as well as the feasible area. 

4.2 Optimal configuration for a magnetic 
bearing-rotor system

As the generations increase, the design values are 
changed to the fitness. Figure 8 shows that the given 
three design variables have good convergences for 
linear optimization. In Figure 8, the axial length of 
the pole leg, , is converged to the maximum value 

in its design limits because of enlarging the area of 
the pole to obtain more magnetic force. The height 
of the pole leg, , has a tendency to converge to 

the value in the design limit for satisfying the 
constraint condition of the outer diameter. The width 
of the pole leg, , is converged to the value of 

the design interval due to the restrictions of outer 
diameter and the width of bobbin. 

Table 1 shows the value of the optimal design 
variables at the maximum stiffness which can be 
recognized as the optimal design. When the stiffness 
converges to the maximum, i.e., the optimization is 
completed.

5. Conclusion

  An optimization problem for a general 8-pole 
magnetic bearing was established for maximizing its 
stiffness. A genetic algorithm was applied to the 

optimal design. The designed stiffness of the 
magnetic bearing was investigated to avoid critical 
speeds of flexible rotor. The convergence of fitness 
and no match of critical speeds might show that the 
magnetic bearing was well optimized with its 
maximum stiffness.
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