그래핀 합성 및 응용 기술 개발 동향

1. 서 론

20세기 이후 과학기술 분야, 특히 정보기술 (Information technology) 분야는 시대를 대 변하는 물질에 기반을 둔 전자소자 기술의 진보를 통해 발전해 온 것을 알 수 있다. 지난 100년 동안 게르마늄, 실리콘 등 반도체 물질 이 발견되며, 이런 소재의 물성에 대한 기초 연구가 빠르게 진행되고 이 신소재를 기반으 로 하는 다양한 응용 연구가 진행되어 공극적 으로는 인류의 삶에 큰 영향을 주는 제품으로 발전할 수 있다. 대표적인 예로서 실리콘 집적 회로는 실리콘이라는 반도체 소재와 실리콘에 가장 적합한 소자 구조인 전자효과 트랜지스 터 (Field effect transistor)의 집적공정에 기반을 두어 오늘날 전자소자 및 시스템의 근간 이 되어 있다. 황후 회로형 반도체 기술의 핵심소재인 실리콘을 무기 반도체 재료를 활용한 정보전자 기술의 한계를 극복할 수 있는 포 스트 실리콘 시대의 후보 물질로서 다양한 나 노 소재들이 연구되고 있는데 그 중에서도 2차 원 탄소 소재인 그래핀 (Graphene)이 많은 주 목을 받고 있다 (그림 1).

그래핀은 탄소 원자들이 벌집 모양 (Honeycomb) 구조를 가지며 한 층을 이 루 2차원 물질이다. 1985년 발견된 퓨리런 (Fullerene, C_{60}), 그리고 1991년 발견된 탄소 나노튜브 (Carbon nanotubes)와 같은 탄소 동 소체 (Carbon allotropes)의 하나로 흔히 희연 음을 구성하고 있는 한 양자점을 그래핀이라고 한다 (그림 2). 플러린과 탄소나노튜브가 발견 된 이후 이들 물질에 대한 많은 연구가 진행되 어 왔던 것처럼, 그래핀 발견 [1] 이후 전 세계 적으로 많은 연구자들이 새로운 탄소 물질에 빠져들어 빠른 속도로 많은 연구를 진행해 왔 다 [2-4].
사실 오랜 시간 동안 많은 연구자들이 단원자층으로 구성되어 양자역학적 특성이 발견되는 순수한 2차원 물질의 발견을 위해 노력해 왔다. 2004년 영국 벤처스타 대학의 Annorning Geim 교수와 Konstantin Novoselov 박사가 최초로 단면수준 그래핀을 분리하여 그래핀 물성을 연구한 공모를 인정받아 2010년 노벨 물리학상을 수상하였고, 현재까지 그래핀은 모든 과학기술 연구 분야에서 가장 많은 관심을 받는 물질이 되었다.

그래핀은 지금까지 세상에서 발견된 가장 얇은 물질이며 동시에 최고의 산은 전자이 동도와 가장 높은 열전도도를 가지는 물질이다. 이렇게 중요한 성질을 갖는 물질이라 해도 그래핀이 단단한 만큼 많은 사람들이 참여하는 연구주제로 발전하게 된 배경에는 스카치에이프로 건강하게 향을 제작하여 연구를 시작할 수 있었기 때문이기도 하다. 또한, 그래핀에 관한 연구는 새로운 물리현상의 발견과 더불어 장자가 전자, 에너지 등 주력 산업과 밀접한 관계가 있는 중요한 새로운 조제 연구라는 측면에서 중요하다. 그동안 많은 연구자들은 일반적인 물질들보다 전기적, 기계적, 열적 특성이 일정하다고 알려진 그래핀의 본래 성질을 규명하고 분석하는 분야에 초점을 맞추어 왔으며, 규명된 물성을 이용해 다양한 응용분야의 활용에 관한 연구를 활발히 진행하고 있다. 따라서 현 시점에서 그래핀 기술의 현황을 정리하고 앞으로의 기술개발 방향을 정립해 보는 것은 매우 시급한 일로 여겨지며, 본고에서는 그래핀의 일반적인 물성, 합성법 및 응용기술 동향에 대해 소개하고자 한다.

2. 그래핀의 물성 [5]

1980년대 이후 반도체 박막으로 구현된 저차원 전자계의 독특한 물리적 특성에 관한 연구는 나노물리학의 시발점이 되었으며, 현재에도 매우 중요한 연구 분야이다. 기존의 저차원 전자계는 구름의 다층 반도체 박막을 제조하기 때문에 고가의 나노스케일 에피타키 (Molecular beam epitaxy) 등의 방위를 사용하여 제조해 왔다. 반면 그래핀은 단층 탄소 원자로만 구성되어 있는 신경망의 인의 2차원 물질로서, 지구상에 풍부하게 존재하는 흔한 단열된 저저항을 수락하여 저전도율로 역할할 수 있다.

그래핀이 보여주는 높은 전자이동도, 열전도도, 강한 기계적, 열적 특성, 유연성, 신축성 등의 우수한 성질은 그 내부에 존재하는 전자들의 특이한 성질로 설명할 수 있다. 그래핀은 구성하고 있는 탄소의 최대 개수 4개는 \(sp^2 \)-혼성 오비탈 (sp²-hybrid orbitals)을 형성하여 강한 공유결합인 \(\sigma \) 결합을 이루며 낮은 1개의 전자는 주변의 다른 탄소와 \(\pi \)결합을 형성하면서 3과 같 이 육각형의 모양을 이차원 구조체를 이룬다. 3과 같이 그래핀은 일반적인 물질과는 상이한 밴드구조를 가지며 밴드갭 (Bandgap)이 없이 전도성을 보이고 있으며, 페르미 준위 (Fermi level) 에서 전자의 상하밀도 (Density of State)가 '0'인 반금속 (Semi-metal) 물질이다. 또한, 도핑 여하에 따라 쉽게 전자-온반자 종류를 변화시킬 수 있는 양극성 전도특성 (Ambipolar conduction)을 지니고 있다. 특히, 그래핀의 전자구조는 브릴루앙 영역 (Brillouin Zone)의 각 꼭지점에서 Conduction 밴드와 Valence 밴드가 만나 페르미 에너지 근처에서 전자의 모멘텀과 에너지가 서로 비례하는 분산관계 (E(k))를 지니는 선형적인 에너지-모멘텀 분산관계 (Linear energy-momentum dispersion)를 보이며, 이런 점이 그래핀의 기계적, 전기적 특성을 결정하는 중요한 요소들이다 [6].

따라서 그래핀에서의 전자 운동을 표현하기 위해서는 일반적인 양자현상을 기술하는 수학적 방정식이 아닌 특수상대론적 운동
그림 3. 그레핀의 격자 구조 (a) 및 밴드 구조 (b)[3].

그림을 하고 스핀이 1/2인 입자를 기술하는 다리 방정식 (Dirac equation)을 사용하는 것이 명확하며 그 해밀토니안 (Hamiltonian)은 다음과 같다.

\[H = \hbar v_F \left(\begin{array}{cc} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{array} \right) = \hbar v_F \sigma \cdot \vec{k} \]

위의 해밀토니안에서 \(\sigma = (\sigma_x, \sigma_y)\)는 파울리 행렬이며 모德拉방정식은 \(\vec{k} = (k_x, k_y)\)로 정의된다. 여기서 파울리 행렬 \(\sigma\)의 고유상태인 \(\uparrow = \left(\begin{array}{c} 1 \\ 0 \end{array} \right)\)과 \(\downarrow = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)\)은 실제 전자스핀을 의미하는 것이 아닌 그림 3(a)의 Honeycomb 격자구조에서 A와 B로 표시된 두 개의 독립된 단위격자 구조 (Sub-lattice)에 의한 것으로 각각의 단위격자 구조가 마치 전자의 스핀과 동일한 역할을 하게 되는 유사스핀 (Pseudospin)을 나타내고 있는 것이다.

그레핀의 독특한 에너지 구조에 기인한 상대론적 다리-페르미온 (Dirac Fermion)의 특성은 고체물리학의 범위를 넘어 입자물리학에서도 급증의 관심을 받고 있다. 위의 다리 방정식의 해가 다리점 (Dirac point) 근처에서 선형적 에너지-모멘텀 관계를 가지기 위해서는 그 유효질량이 0이어야 하므로 그레핀의 전자는 질량이 없는 다리공자 (Massless Dirac Fermion)로 정의되며, 이는 그레핀에서의 높은 전자 이동도를 설명해 준다. 또한, 단원공자 그레핀의 광학과이 (\(T \approx 1 - \pi \alpha = 99.7\%\)) 양자전기 역학 이론에서 추정되는 미세구조상수 (Fine structure constant, \(\alpha = e^2/4\pi\epsilon_0\hbar c \approx 1/137\))로 기술되는 정은 그레핀 물성이 양자전기 역학에 기인함을 보여 주는 단적인 예이다. 이 외에도 반도수 양자 호 효과 (Fractional quantum Hall effect), 클라인 페리포스 (Klein paradox) 등 양자 전기역학 현상 등이 실험적으로 증명되고 있지만, 그레핀의 특이한 밴드구조에서 기인하는 상대론적 효과와 이를 활용한 응용소자 기술 등은 아직 초기 연구 단계에 있다고 할 수 있어 원천 연구와 함께 응용 분야의 발전을 위해 많은 연구가 이루어져야 할 것으로 생각된다.

3. 그레핀 합성법 [5]

그레핀이 많은 연구자들에게 대형적으로 다가갈 수 있었던 이유는 우수한 물성뿐만 아니라 쉽고 간편하게 그레핀을 얻을 수 있다는 점이었다. 2004년 처음 연구자들에게 기제적 바리법 (Mechanical exfoliation, 일반 스키치테임법)을 통해 선보이게 된 그레핀은 고품질 대면서 그레핀의 성장이라는 어려운 속재를 갖는 연구가에게 인기주였다. 그 결과 현재는 스카치테임법이 의도적 합성법, CVD성장법, 그리고 에피텍시키 (Epitaxy) 합성법 등을 이용한 연구가 진행되고 있고 우수한 결과들이 계속적으로 발표되고 있다.

3.1 스키치 테임법

초기의 그레핀은 대부분 스키치테임법이라는 매우 단순한 물리적 박리법에 의해 제조되었다. 우선 흑연 플레이크 (Graphite flake), 일반적인 스키치 테임, 그리고 SiO2 웨이퍼를 준비한다. 준비한 플레이크를 스키치테임에 올려 후 수차례 접었다 했다를 반복한다. 이 과정이 끝난 후 테임을 SiO2
웨이더에 올린 후 플레이크 자국이 남아있는 부분을 문질러 줄 후 태영을 제거하게 되면 그림 4와 같이 한층의 그래핀부터 다층의 그래핀을 방향 항공포로 통해 판찰할 수 있다. 앞에서 설명한 바와 같이 그래핀은 2차원 평면상으로 3개의 탄소 원자들이 강한 공유 결합을 형성하는 반면 수직이 방향으로는 상대적으로 약한 반데르발스 간으로 연결되어 있어 충전의 마찰저수가 매우 낮아 스카치영의 약한 접착력으로도 분리가 가능하게 된다. 하지만 이와 같은 방법으로 제조된 그래핀은 크기와 형태를 제어할 수 없기 때문에 소자용의 용을에 어려움이 있다.

3.2 화학적 합성법
그래핀의 대면적 성장과 대량생산이라는 두 가지 목표에 가장 근접해 있는 방법으로 흐름의 산화-환원을 통한 화학적 합성법이 있다. 흐름을 산화시키는 방법은 19세기 Brodie, schhhauert을 시작으로, Staudenmaier, Hummers와 Offeman 등 많은 연구가 되어있으며 [8], 그 중에서 Hummers가 제안한 방법을 연구자들이 가장 많이 사용하고 있다. 그림 5의 같이 강산과 산화재료 산화시험 산화 후 그래핀(그래파이트 옥사이드, Graphite oxide)는 강한 친수성으로 물 분자가 변종 면 사이에 삽입되는 것이 용이하여, 이로 인해 평면 간격이 6~12Å으로 늘어나 장시간의 교환이나 초음파 분쇄기

그림 5. 강산과 산화재료와 음어진 그래파이트의 화학적 박리과정.

를 이용하면 쉽게 박리 시킬 수 있다 [9]. 이렇게 얻어진 산화 그래핀 (Graphene oxide) 시트는 표면에 수산화와 에폭시기, 가장자리에는 카르복실기와 결합한 형태로 존재하기 때문에 그래핀 고유의 성질을 대부분 상실하게 된다. 하지만 산화 그래핀을 다시 환원 시켜 산소를 포함한 작용기를 제거해 주면 다시 그래핀과 유사한 특성을 나타내기 때문에 환원 반응을 통해 작용기를 완전히 제거 할 수 있는 연구가 활발히 진행중이다.

대표적인 환원법은 석탄 또는 기상의 하이 드라건을 산화 그래핀에 노출 시키는 방법으로 대부분의 작용기가 제거된다 [9,10]. 화학적 그래핀 합성법은 그래핀의 물성이 다른 방법에 비해 저하되는 단점이 있으나, 기하학적 요소나 대량생산과 대면적화가 가능하며 기판의 종류나 구조에 제약을 거의 받지 않는다는 큰 장점을 가지고 있어 이를 이용하고자 하는 연구가 활발히 진행되고 있다.

3.3 화학기상증착 (Chemical Vapor Deposition, CVD) 성장법
2009년 CVD 성장법을 이용한 그래핀의 대면적 성장이라는 놀라운 결과는 그래핀 연구의 새로운 장을 열었다고 해도 과언이 아니다. 그래핀의 대면적 성장이 이루어지면서 설계적으로 소자용 연구가 활발히 이루어지고 있고, 다양한 분야의 연구자들의 참여로 활발히 이루어지고자 시도하고 있다.
그림 6은 CVD 성장법을 이용한 그래핀의
4. 에피택시 합성법

에피택시 합성법은 실리콘 카바이드 (SiC)의 같이 탄소가 결정에 흡착되거나 포함되어 있는 재료들 중 1,500℃의 고온 분위기에 서 열처리를 통해 탄소가 표면의 결을 따라 성장하면서 그래핀층을 형성한다. 그림 7에 서 에피택시 합성법을 통해 성장한 그래핀과 LEED pattern을 통해 결정성이 우수한 단층 그래핀이 성장됨을 확인 할 수 있다 [12]. 에피택시 성장법은 전염 성 기판에 그래핀을 직접 성장하는 장점이 있으나, 이 방법으로 성장한 그래핀은 스카치테임법이나 CVD 성장법에 의해 성장한 그래핀보다 특성이 뛰어나지 못하며 SiC기판 재료가 비싸고 제작이 어렵다는 단점이 있어 이를 극복하기 위한 연구가 진행되고 있다.

위와 같이 소개한 성장방법은 그래핀을 기반으로 하는 소자의 응용에 매우 중요한 부분이다. 따라서 소자로부터 응용을 위해서는 다양한 성장범과 고품질의 대면적 그래핀 성장에 관한 연구가 유기적으로 진행이 되어야 할 것이다.

그림 7. LEED, AFM, STM을 통해 관찰한 에피택시 그래핀 [12].
5. 그래핀 응용 연구 동향 [13]

그래핀은 원자 한 줄의 두께 정도로 알아서 두명의 세계에도 천천히 부러지면서도 전도율이 뛰어나 디스플레이, 디지털센터 및 태양전지의 전극이거나 차세대 반도체소자용 신소재로 주목받고 있다 [6]. 또한, 기계적인 유연성까지 뛰어나 현재의 무형전극인 ITO를 대체하는 물질로서 산업계에서 큰 관심을 가지고 있어 앞으로 화소차원 대체재로서 부각되는 성향이다. 한편 그래핀의 전하이동도가 실리콘이나 화합물반도체보다 훨씬 크기 때문에 차세대 전자소자용 신소재로도 주목받고 있으며, 해양전류밀도가 크고 구리 대신 소자 사이의 전기연결 (Interconnect) 세계로 옮겨 쓸 수 있고 휘듭도우가 좋고 방열재료로도 관심을 끌고 있다. 또한, 그래핀의 앞장에서 중요한 반도체 결합구조를 통해 기계적 역학적 특성에 관여하기 어렵기 때문에 이러한 기계/물질 베타이 필름으로 활용될 수도 있다. 표 1에서 그래핀과 기존재료의 물성을 비교하여 정리하였다.

이러한 우수한 물성을 인하여 그래핀은 실리콘 나노전자소자의 다음 세대를 이끄는 재료로서의 가능성을 KISTEP 선정 10대 미래용부품에 포함되었고, 미국 물리학회 선정 ‘미래 정보기술’을 바꿀 가장 주목할 만한 신소재’로 소개되며, 그래핀 트렌드는 MIT 선정 10대 유망기술에 포함되는 등 관련 연구 및 연구영역

<table>
<thead>
<tr>
<th>물성</th>
<th>그래핀</th>
<th>기존재료</th>
<th>비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>두력</td>
<td>가장 약한 물질</td>
<td>NA</td>
<td>단일자층</td>
</tr>
<tr>
<td>전자이동도 (cm²/√s)</td>
<td>200,000</td>
<td>1,950 (Si)</td>
<td>150배</td>
</tr>
<tr>
<td>해양전류밀도 (A/cm²)</td>
<td>10⁸</td>
<td>10⁸</td>
<td>1,000배</td>
</tr>
<tr>
<td>열전도도 (W/m·K)</td>
<td>5,300</td>
<td>400</td>
<td>13배</td>
</tr>
<tr>
<td>단방계수 (GPa)</td>
<td>1,000</td>
<td>200 (Steel)</td>
<td>5배</td>
</tr>
<tr>
<td>파리복음율 (%)</td>
<td>~ 20</td>
<td>(1 (ITO, Si))</td>
<td>20배</td>
</tr>
</tbody>
</table>

그림 8. 논문 숫자로 본 그래핀, 탄소나노튜브, 물리학의 연구동향 [15].

그림 9. 특허 숫자로 본 그래핀, 탄소나노튜브, 물리학의 상용화 기술개발 동향 [15].
을 발전한 연구가 진행되고 있음을 의미한다. 그림 8은 풀리면, 탄소나노튜브 및 그래핀 분야의 연도별 발표 논문 수의 추이를 보여준다 [15]. 향후 그래핀 논문 발표 경향이 탄소나노튜브의 경향을 유사하게 따를 것으로 가능하다면, 그래핀 관련 연구논문은 향후 10년간 지속적으로 급격히 증가할 것으로 예상된다.

이러한 그래핀 관련 연구는 기초과학적 측면에서는 양자효과 발견에 다양한 물리 현상 규명으로 노벨 물리학상을 수상한 정도로 학문적 중요성이 증증되었다. 또한, 정보 전자, 에너지, 화학 등 각 산업 분야에서 그 동안 추구해온 전통적 소재를 기반으로 하는 성능 향상과 기반기술의 소재 측면과 공정기술 측면에서 서로 하려는 현계에 도달하고, 현제 산업 각 분야에서 공통적으로 요구하는 신 기능을 발현하는 신소재에 의한 새로운 기술의 창출에 대한 전반적인 요구가 커지는 시점에 이르러 산업적 측면에서도 중요성이 커져가고 있다 [15].

그림 9에서 보듯이 그래핀과 관련된 특허 는 2005년 이후부터 증가되기 시작하여 최근 급격하게 증가하는 추세를 보이고 있다. 상용화 추세의 주요 지표로서 특히 출원의 전반적인 경향을 살펴보면 미국이 그래핀의 기초 및 응용 분야 전반에 걸쳐 특허를 나타내고 있지만, 최근 들어 한국이 그 투자를 추적하고 있는 경향을 보고는데 이는 한국의 경우 산·학·연 연구개발을 통한 기초원천 연구로부터 상용화 기술까지의 기술이전 속도가 빠르기 때문인 것으로 파악된다.

2010년 Displaybank [16]에서 발표한 그래핀 관련 특허 출원 동향 분석에서 국가별 추이를 살펴보면, 전체 출원건수 대비 미국 48% (554건)를 미국이 차지하고 있으며, 그 뒤를 한국이 30% (354건)를 출원하고 있다. 미국의 경우 2000년대 초반부터 출원건수가 지속적인 증가세를 보이고 있으며, 특히 2007년 이후 특허 출원이 급격히 증가하고 있고, 한국의 경우 최근 들어 특히 출원이 급격히 증가하여 2009년에는 150건의 특허 출원건수를 보이고 있다. 참고로 일본의 경우 2000년대 초반 다수의 특허를 출원하였으나 최근까지 양적으로 큰 성장세를 보이지 않고 있 지 못하고 있는 것으로 파악되었다. 특히 그래핀 분야의 주요 출원국 (Top 10)을 살펴보면 삼성전자가 36% (104건)로 가장 많은 특허를 출원하고 있고, 그 뒤를 GSI가 15% (43건), KIST 14% (41건) 순으로 나타내고 있는 등 Top10 기관 중 국적이 한국인 출원인이 5개를 나타내고 있어, 최근 들어 우리나라에서의 그래핀 연구의 성장세를 가능할 수 있다.

이 보고에 따르면 [16] 그래핀의 응용 분야별 특허 수는 반도체 분야가 205건으로 특히 집중도가 가장 높으며, 다음으로는 이차전지 (142건), OLED 등 디스플레이 (127건), 경량·고강도 복합소재 (90건) 순으로 조지어졌다. 특히, 우리나라의 경우는 반도체와 디스플레이 산업 강국의 면모를 보여주듯이 반도체 분야가 76건으로 가장 많은 특허가 출원되고 있으며, 다음으로 OLED 등 디스플레이 분야 (44건), 경량·고강도 복합소재 (36건), 이차전지 (30건) 순으로 특허가 출원되었다. 특허가 집중되는 분야는 그래핀의 상용화 가능성이 높고 향후 시장성격화가 큰 분야라고 할 수 있어 상용화 기술 개발의 조
그림 11. 그래핀 소재 및 응용부품 적용 전략 기술 분야 [17].

점이 맞추어 지고 있다고 판단된다.

최근 그래핀 관련 분야의 연구는 기초과학 분야의 영역에서 그래핀의 물리적/화학적/ 재료적 특성에 관한 이론적, 실험적 연구 단계를 거쳐, 이를 토대로 한 다양한 응용 연구 및 현재의 산업적 인프라에 적용할 수 있는 공정 친화적 소재와 기능화 기술 연구에 이르고 있다. 불과 수년간의 연구 기간에 새로운 무를 발견하는 소재에 대한 기초연구 단계에서 응용 및 적용 기술개발 단계까지 다다를 정도로, 그래핀 관련 연구는 그 유래를 찾기 힘든 정도로 급속한 발전 속도를 보이고 있는 것이다.

최근 우리 정부는 지금까지 그래핀 분야의 기초연구 위주 R&D 투자로 포트폴리오를 상용화 기술개발과 병행하여 상조 보완적인 구조로 제설계할 필요성과 산학연 협력에 의하여 그래핀 분야에 상용화를 위한 연구 인력 양성의 필요성을 인식하고 있다. 그래핀의 상용화를 위해서는 이상적 물성의 그래핀 제조 원천기술 개발, 제품적용을 위한 공정 및 양산화 기술개발 등이 필요하며, 개발되는 소재의 적용가능성 검토를 위한 테스트비드 및 전문인력 양성 등 기반구축이 요구되고 있다. 그래핀이 가지고 있는 모든 특성을 제품화로 연계하여 안정적으로 구성하기 위해서는 기초·원천·응용·상용화 등 R&D 전주기에 걸친 전략적인 투자가 필요하다.

이러한 요구에 부응하여 지식경제부에서는 전략기획단의 부품소재 MD실이 주관하여 디스플레이, 에너지, 복합소재 분야 관련 다양한 응용성 및 높은 미래 가치를 지닌 그래핀 소재를 조기 상용화하여, 글로벌 그래핀 시장을 선점하고, 그래핀 소재에서 완제품까지 가치사슬(Value chain)을 포함하는 그래핀 산업과 그 생태계를 새롭게 만들어 범용적으로 대·중·소 동반성장 및 새로운 일자리 창출에 기여할 수 있는 그래핀 소재 및 부품 상용화 기술 개발 사업을 추진하고 있다. 본 사업에서는 그래핀 산업 선도국 실현을 위해 그래핀 기술의 상용화를 통한 신시장·신산업 창출이 가능한 대형사업 기획의 결과로서, 디스플레이, 에너지, 복합소재 등 3대 핵심 기술 분야에서 상용화 비즈니스 모델을 기반으로 기존 위기 개발된 기초·원천기술 중 사업화 가능성이 높은 9대 전략사업을 발굴하여 주력산업의 제품 경쟁력 향상이 가능한 특화된 제품 지향적 R&D 사업을 추진하고 있다. [17]

세계적으로도 그래핀 분야는 우리나라는 기술 수준 우위를 인정받고 있는 만큼 조기 상용화를 통한 글로벌 시장 선점에 위해서는 상용화 및 양산화 기술개발에 정부 차원에서의 지원이 필요하며 장기적으로 시장에서 시급할 수 있다. 이를 위하여 그래핀 산업의 기술 및 시장 Trend를 기반으로 사업의 비전과 목표, 추진전략과 체계를 도출하고 개발기술의 상용화를 가속화할 수 있는 프로그램으로서 정부주도 원천기술 개발 및 산업화 주도 상용기술개발을 추진하고 있다. 국내의 그래핀 기초연구의 수많은 성과를 바탕으로 산업기술과의 접목을 통해 일부 분야에서 5~7년 내에 상용화가 가능한 분야에 선별적으로 투자하여 그래핀 산업이라는 신산업 분야의 기술을 선점할 경우 미래 국가 경쟁력을 견인하는 산업으로의 발돋움이 기대된다.
6. 결론

전자학의 배와 같이 현재의 정보기술의 진보는 소자기술과 이를 뒷받침하는 소재기술의 변천에 따라 발전하여 왔으며, 특히, 21세기에는 그 전형적 특성으로 대표하는 희석소재인 실리콘 등 무기 반도체 재료를 활용한 정보전자 기술의 한계를 극복할 수 있는 대표적 전환형 소재로서 그레핀이 주목을 받고 있다. 그레핀의 발전은 2차원 물질이라는 새로운 분야를 개척하였고, 그레핀의 우수한 물성은 기초과학적인 관심뿐만 아니라 상용화에 대한 관심을 증폭시키고 있다. 이상적인 그레핀은 지금까지 인류에게 알려진 물질 중에서 가장 많으면서도, 전기가 잘 통하고 투명할 특성을 가지고 있으며, 연전도율이 높고, 강하름에도 유연할 뿐더러 2차원 막막 구조로 물질을 투과시키지 않는 우수한 물성을 가지고 있다. 이런 우수한 물성을 연하여 그레핀은 다양한 분야에 응용 가능성을 보여 주고 있는데, 단기적으로는 그레핀의 투명전극, 에너지 소재, 복합소재로의 응용분야에서 산업화가 진행될 것이고, 장기적으로는 전자 부품 및 바이오 응용 분야로 확대될 것으로 예상되고 있다. 또한, 양자 전기역학적 특성을 등 특이한 물리적 특성은 미래의 신 개념소자로의 출현을 기대하게 된다. 따라서 국가차원에서 그레핀 기초인프라 기술과 더불어 상용화 기술에 대한 투자가 적극적이어야 할 것이다. 우리나라에서 그레핀 소재와 응용 핵심 기술을 확보하고 새로운 시장을 개척할 수 있을 것으로 기대한다.

참고 문헌

[14] 교육과학기술부 그래핀 원자기법개발 협의 구축 기획 보고서, 2011년 12월
[17] 지식경제부 그래핀 소재·부품 상용화 기술 개발 사업 기획보고서, 2011년 12월
제/자/역/력

성 명 : 김종운
학 력
- 2006년 대전대학교 응용화학과
- 2009년 한국대학화 학과 분석화학전공 이학석사

경 력
- 2008년 - 현재
 한국대학화 화학과 분석화학전공 박사과정
 KAIST 그래핀연구센터 연구원
- 2012년 - 현재

성 명 : 최춘기
학 력
- 1987년 성균관대학교 공과대학
 금속공학과 공학사
 1996년 (프) U. d'ORLEANS 물리학과 응용물리전공 이학박사

경 력
- 1996년 - 현재
 한국전자통신연구원
 그래피소자장의연구실
 책임연구원/실장
- 2008년 - 2008년
 영국 캠브리지대학교
 CAPEE 방문연구원
- 2007년 - 현재
 과학기술연합대학원대학교 차세대소자공학과 교수
- 2010년 - 2012년
 한국연구재단 나노융합단 전문위원 (RB)

성 명 : 최성윤
학 력
- 1991년 KAIST 화학과 이학사
- 1994년 KAIST 화학과 (물리화학)
 이학석사
- 1998년 KAIST 화학과 (물리화학)
 이학박사

경 력
- 1996년 - 2011년
 한국전자통신연구원
 그래피소자장의연구실
 설계/책임연구원
- 2006년 - 2007년
 영국 캠브리지대학교
 화학과 및 CAPEE 방문연구원
- 2009년 - 2011년
 과학기술연합대학원대학교 차세대소자공학전공 교수
- 2011년 - 현재
 KAIST 전기 및 전자공학과 교수
- 2012년 - 현재
 KAIST 나노융합연구소
 그래핀연구센터 센터장