DOI QR코드

DOI QR Code

Synthesis, Spectroscopic Studies of Binuclear Ruthenium(II) Carbonyl Thiosemicarba-zone Complexes Containing PPh3/AsPh3 as Co-ligands: DNA Binding/Cleavage

  • Sampath, K. (Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science) ;
  • Sathiyaraj, S. (Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science) ;
  • Jayabalakrishnan, C. (Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science)
  • 투고 : 2012.09.12
  • 심사 : 2012.11.03
  • 발행 : 2013.02.20

초록

The ruthenium(II) ferrocenyl heterocyclic thiosemicarbazone complexes of the type $[RuCl(CO)(EPh_3)]_2L$ (where E = P/As; L = binucleating monobasic tridendate thiosemicarbazone ligand) have been investigated. Strutural features were determined by analytical and spectral techniques. Binding of these complexes with CT-DNA by absorption spectral study indicates that the ruthenium(II) complexes form adducts with DNA and has intrinsic binding constant in the range of $3.3{\times}10^4-1.2{\times}10^5M^{-1}$. The complexes exhibit a remarkable DNA cleavage activity with CT-DNA in the presence of hydrogen oxide and the cleavage activity depends on dosage.

키워드

참고문헌

  1. Wu, B. Y.; Gao, L. H.; Duan, Z. M.; Wang, K. Z. J. Inorg. Biochem. 2005, 99, 1685. https://doi.org/10.1016/j.jinorgbio.2005.05.012
  2. Liu, J. G.; Ye, B. H.; Li, H.; Zhen, Q. X.; Ji, L. N.; Fu, Y. H. J. Inorg. Biochem. 1999, 76, 265. https://doi.org/10.1016/S0162-0134(99)00154-3
  3. Uma, V.; Vaidyanathan V. G.; Nair, B. U. Bull. Chem. Soc. Jpn. 2005, 78, 845. https://doi.org/10.1246/bcsj.78.845
  4. Shahabadi, N.; Kashanian, S.; Darabi, F. Eur. J. Med. Chem. 2010, 45, 4239. https://doi.org/10.1016/j.ejmech.2010.06.020
  5. Ezadyar, S. A.; Kumbhar, A. S.; Kumbhar, A. A.; Khan, A. Polyhedron. 2012, 36, 45. https://doi.org/10.1016/j.poly.2012.01.024
  6. Chitrapriya, N.; Mahalingam, V.; Zeller, M.; Jayabalan, R.; Swaminathan, K.; Natarajan, K. Polyhedron 2008, 27, 939. https://doi.org/10.1016/j.poly.2007.11.039
  7. Sathya, N.; Raja, G.; Jayabalakrishnan, C. Synth. React. Inorg. Met. Org. Chem. 2011, 41, 81.
  8. Saeed, S.; Rashid, N.; Jones, P. G.; Ali, M.; Hussain, R. Eur. J. Med. Chem. 2010, 45, 1323. https://doi.org/10.1016/j.ejmech.2009.12.016
  9. Saydam, S.; Yilmaz, E. Spectrochim. Acta Part A 2006, 63, 506. https://doi.org/10.1016/j.saa.2005.05.037
  10. Pandeya, S. N.; Sriram, D.; Nath, G.; Declercq, E. Eur. J. Pharm. Sci. 1999, 9, 25. https://doi.org/10.1016/S0928-0987(99)00038-X
  11. Prabhakaran, R.; Anantharaman, S.; Thilagavathi, M.; Kaveri, M. V.; Kalaivani, P.; Karvembu, R.; Dharmaraj, N.; Bertagnolli, H.; Dallermer F.; Natarajan, K. Spectrochim. Acta A 2011, 78, 844. https://doi.org/10.1016/j.saa.2010.12.046
  12. Joseph, M.; Kuriakose, M.; Kurup, M. R. P.; Suresh, E.; Kishore, A.; Bhat, S. G. Polyhedron 2006, 25, 61. https://doi.org/10.1016/j.poly.2005.07.006
  13. Vogel, A. I. Textbook of Practical Organic Chemistry, 5th Edn, Longman, London, 1989; p 264.
  14. Yogeeswari, P.; Sriram, D.; Mehta, S.; Nigam, D.; Mohan Kumar, M.; Murugesan, S.; Stables, J. P. IL Farmaco 2005, 60, 1. https://doi.org/10.1016/j.farmac.2004.09.001
  15. Natarajan, K.; Agarwala, U. Inorg. Nucl. Chem. Letters 1978, 14,
  16. Sanchez-Delgado, R. A.; Lee, W. Y.; Choi, S. R.; Cho, Y.; Jun, M. J. Trans. Met. Chem. 1991, 16, 241. https://doi.org/10.1007/BF01032844
  17. Chen, F, J.; Xu, M.; Xi, P. X.; Liu, H. Y.; Zeng, Z. Z. Spectrochim. Acta Part A 2011, 81, 1386.
  18. Kannan, S.; Sivagamasundari, M.; Ramesh, R.; Liu, Y. J. Organomet. Chem. 2008, 693, 2251. https://doi.org/10.1016/j.jorganchem.2008.03.023
  19. Rodrigues, C.; Batista, A. A.; Aucelio, R. Q.; Teixeira. L. R.; Visentin, L. D. C.; Beraldo, H. Polyhedron 2008, 27, 3061. https://doi.org/10.1016/j.poly.2008.06.002
  20. Prabhu, R. N.; Pandiarajan, D.; Ramesh, R. J. Organomet. Chem. 2009, 694, 4170. https://doi.org/10.1016/j.jorganchem.2009.09.010
  21. Prasad, K. T.; Therrien, B.; Rao, K. M. J. Organomet. Chem. 2010, 695, 226. https://doi.org/10.1016/j.jorganchem.2009.10.007
  22. Alam, M.; Khan, S.; Khan. Md. S. J. Chil. Chem. Soc. 2008, 53, 1714.
  23. Mahalingam, V.; Chitrapriya, N.; Fronczek, F. R.; Natarajan, K. Polyhedron 2008, 27, 1917. https://doi.org/10.1016/j.poly.2008.02.036
  24. Raja, G.; Sathya, N.; Jayabalakrishnan, C. J. Coord. Chem. 2011, 64, 817.
  25. West, D. X.; Nassar, A. A.; El-Saied, F. A.; Ayad, Md. I. Trans. Met. Chem. 1998, 23, 321. https://doi.org/10.1023/A:1006957325074
  26. Sing, R. V.; Joshi, S. C.; Garaj, A.; Naqpal, P. Appl. Organomet. Chem. 2002, 16, 713. https://doi.org/10.1002/aoc.378
  27. Casas, J. S.; Castano, M. V.; Cifuentes, M. C.; Sanchez, A.; Sordo, J. Polyhedron 2002, 21, 1651. https://doi.org/10.1016/S0277-5387(02)01035-5
  28. Pal, S. K.; Krishnan, A.; Das, P. K.; Samuelson, A. G. J. Organomet. Chem. 2000, 604, 248. https://doi.org/10.1016/S0022-328X(00)00278-3
  29. Desai, J. T.; Desai, C. K.; Desai, K. R. J. Iran. Chem. Soc. 2008, 5,67. https://doi.org/10.1007/BF03245817
  30. Perz, S.; Lopez, C.; Caubet, A.; Solans, X.; Bardia, M. F.; Gich, M.; Molins, E. J. Organomet. Chem. 2007, 692, 2402. https://doi.org/10.1016/j.jorganchem.2007.01.054
  31. Casas, J. S.; Castano, M. V.; Cifuentes, M. C.; Garcia-Monteagudo, J. C.; Sanchez, A.; Sordo, J.; Abram, U. J. Inorg. Biochem. 2004, 98, 1009. https://doi.org/10.1016/j.jinorgbio.2004.02.019
  32. Barbazan, P.; Carballo, R.; Prieto, I.; Turnes, M.; Vazquez-lopez, E. M. J. Organomet. Chem. 2009, 694, 3102. https://doi.org/10.1016/j.jorganchem.2009.05.032
  33. Barton, J. K.; Danishefsky, A. T.; Goldberg, J. M. J. Am. Chem. Soc. 1984, 106, 2172. https://doi.org/10.1021/ja00319a043
  34. Zhong, C. Y.; Zhao, J.; Wu, Y. B.; Yin, C. X.; Yang, P. J. Inorg. Biochem. 2007, 101, 10. https://doi.org/10.1016/j.jinorgbio.2006.07.011
  35. Wang, Y.; Yang, Z. Y. Trans. Met. Chem. 2005, 30, 902. https://doi.org/10.1007/s11243-005-6298-y
  36. Lawrence, D.; Vaidyanathan, V. G.; Unni Nair, B. J. Inorg. Biochem. 2006, 100, 1244. https://doi.org/10.1016/j.jinorgbio.2006.02.003
  37. Wolf, A.; Shimer, G. H.; Meehan, T. Biochemistry 1987, 26, 6392. https://doi.org/10.1021/bi00394a013
  38. Liu, X. W.; Li, J.; Deng, H.; Zheng, K. C.; Mao, Z. W.; Ji, L. N. Inorg. Chim. Acta. 2005, 358, 3311. https://doi.org/10.1016/j.ica.2005.05.006
  39. Kulkarni, N. V.; Kamath, A.; Budagumpi, S.; Revankar, V. K. J. Mol. Struct. 2011, 1006, 580. https://doi.org/10.1016/j.molstruc.2011.10.008
  40. Pathan, A. H.; Bakale, R. P.; Naik, G. N.; Frampton, C. S.; Gudasi, K. B. Polyhedron 2012, 34, 149. https://doi.org/10.1016/j.poly.2011.12.033
  41. Foxon, S. P.; Phillips, T.; Gill, M. R.; Towrie, M.; Parker, A. W.; Webb, M.; Thomas, J. A. Angew. Chem. 2007, 119, 3760. https://doi.org/10.1002/ange.200604837
  42. Steen, S. V. D.; Hoog, P. D.; Schilden, K. V. D.; Gamez, P.; Pitie, M.; Kiss, R.; Reedijk, J. Chem. Commun. 2010, 46, 3568. https://doi.org/10.1039/c000077a
  43. Arjmand, F.; Sayeed, F.; Muddassir, Md. J. Photochem. Photobiol B: Biolog. 2011, 103, 166. https://doi.org/10.1016/j.jphotobiol.2011.03.001

피인용 문헌

  1. Synthesis, characterization, stereochemistry, biological investigation and DNA binding studies on N-acyl-t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-ones vol.1171, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2018.05.102