DOI QR코드

DOI QR Code

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man (Daegu Center, Korea Basic Science Institute) ;
  • Han, Oc Hee (Graduate School of Analytical Science & Technology, Chungnam National University)
  • Received : 2012.12.22
  • Accepted : 2012.12.27
  • Published : 2013.02.20

Abstract

The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Acknowledgement

Supported by : KBSI

References

  1. Samulski, E. T. Nature Mater. 2011, 10, 486. https://doi.org/10.1038/nmat3059
  2. Spiess, H. W. Macromolecules 2010, 43, 5479. https://doi.org/10.1021/ma1005952
  3. Li, J.; Park, J. K.; Moore, R. B.; Madsen, L. A. Nature Mater. 2011, 10, 507. https://doi.org/10.1038/nmat3048
  4. Schmidt-Rohr, K.; Chen, Q. Nature Mater. 2008, 7, 75.
  5. Mauritz, K. A.; Moore, R. B. Chem. Rev. 2004, 104, 4535. https://doi.org/10.1021/cr0207123
  6. Elabd, Y. A.; Hickner, M. A. Macromolecules 2011, 44, 1. https://doi.org/10.1021/ma101247c
  7. Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637. https://doi.org/10.1021/cr020715f
  8. Cappadonia, M.; Erning, J. W.; Niaki, S. M. S.; Stimming, U. Solid State Ionics 1995, 77, 65. https://doi.org/10.1016/0167-2738(94)00289-5
  9. Anantaraman, A. V.; Gardner, C. L. J. Electroanal. Chem. 1996, 414, 115.
  10. Pourcelly, G.; Oikonomou, A.; Gavach, C.; Hurwitz, H. D. J. Electroanal. Chem. 1990, 287, 43. https://doi.org/10.1016/0022-0728(90)87159-H
  11. Jung, S. Y.; Han, O. H. Bull. Korean Chem. Soc. 2009, 30, 1559. https://doi.org/10.5012/bkcs.2009.30.7.1559
  12. Hensley, J. E.; Way, J. D.; Dec, S. F.; Abney, K. D. J. Membr. Sci. 2007, 298, 190. https://doi.org/10.1016/j.memsci.2007.04.019
  13. Park, M. J.; Balsara, N. P. Macromolecules 2010, 43, 292. https://doi.org/10.1021/ma901980b
  14. Ma, S.; Siroma, Z.; Tanaka, H. J. Electrochem. Soc. 2006, 153, A2274. https://doi.org/10.1149/1.2357727
  15. Li, J.; Wilmsmeyer, K. G.; Madsen, L. A. Macromolecules 2009, 42, 255. https://doi.org/10.1021/ma802106g
  16. Gierke, T. D.; Munn, G. E.; Wilson, F. C. J. Polym. Sci.: Polym. Phys. Ed. 1981, 19, 1687. https://doi.org/10.1002/pol.1981.180191103
  17. Young, S. K.; Trevino, S. F.; Beck Tan, N. C. J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 387. https://doi.org/10.1002/polb.10092
  18. van der Heijden, P. C.; Rubatat, L.; Diat, O. Macromolecules 2004, 37, 5327. https://doi.org/10.1021/ma035642w
  19. Hou, J.; Li, J.; Madsen, L. A. Macromolecules 2010, 43, 347. https://doi.org/10.1021/ma902070h
  20. Park, J. K.; Li, J.; Divoux, G. M.; Madsen, L. A.; Moore, R. B. Macromolecules 2011, 44, 5701. https://doi.org/10.1021/ma200865p
  21. Perrin, J.-C.; Lyonnard, S.; Guillermo, A.; Levitz, P. Magn. Reson. Imaging 2007, 25, 501. https://doi.org/10.1016/j.mri.2007.01.002
  22. Rankothge, M.; Haryadi; Moran, G.; Hook, J.; Van Gorkom, L. Solid State Ionics 1994, 67, 241. https://doi.org/10.1016/0167-2738(94)90012-4
  23. Chen, R. S.; Jayakody, J. P.; Greenbaum, S. G.; Pak, Y. S.; Xu, G.; McLin, M. G.; Fontanella, J. J. J. Electrochem. Soc. 1993, 140,889. https://doi.org/10.1149/1.2056223
  24. Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nature Mater. 2009, 8, 831. https://doi.org/10.1038/nmat2526
  25. Aguilera-Mercado, B. M.; Genesky, G. D.; Duncan, T. M.; Cohen, C.; Escobedo, F. A. Macromolecules 2010, 43, 7173. https://doi.org/10.1021/ma100744p
  26. Albunia, A. R.; Graf, R.; Grassi, A.; Guerra, G.; Spiess, H. W. Macromolecules 2009, 42, 4929. https://doi.org/10.1021/ma900994z
  27. Callaghan, P. T.; Samulski, E. T. Macromolecules 2003, 36, 724. https://doi.org/10.1021/ma021174z
  28. Deloche, B.; Samulski, E. T. Macromolecules 1981, 14, 575. https://doi.org/10.1021/ma50004a024
  29. Matsumura, K.; Hayamizu, K.; Yamamoto, O. J. Polym. Sci. Part B: Polym. Phys. 1989, 27, 2407. https://doi.org/10.1002/polb.1989.090271201
  30. Prestegard, J. H.; Al-Hashimi, H. M.; Tolman, J. R. Q. Rev. Biophys. 2000, 33, 371. https://doi.org/10.1017/S0033583500003656
  31. Woutersen, S.; Bakker, H. J. Phys. Rev. Lett. 2006, 96, 138305. https://doi.org/10.1103/PhysRevLett.96.138305
  32. Xie, T. Nature 2010, 464, 267. https://doi.org/10.1038/nature08863