DOI QR코드

DOI QR Code

A Design of High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor Data

TOF 센서용 3차원 Depth Image 추출을 위한 고속 위상 연산기 설계

  • 구정윤 (금오공과대학교 전자공학과) ;
  • 신경욱 (금오공과대학교 전자공학부)
  • Received : 2012.11.14
  • Accepted : 2012.12.10
  • Published : 2013.02.28

Abstract

A hardware implementation of phase calculator for extracting 3D depth image from TOF(Time-Of-Flight) sensor is described. The designed phase calculator, which adopts a pipelined architecture to improve throughput, performs arctangent operation using vectoring mode of CORDIC algorithm. Fixed-point MATLAB modeling and simulations are carried out to determine the optimized bit-widths and number of iteration. The designed phase calculator is verified by FPGA-in-the-loop verification using MATLAB/Simulink, and synthesized with a TSMC 0.18-${\mu}m$ CMOS cell library. It has 16,000 gates and the estimated throughput is about 9.6 Gbps at 200Mhz@1.8V.

TOF(Time-Of-Flight) 센서에 의해 획득된 정보로부터 3차원 깊이 영상(depth image)을 추출하기 위한 위상 연산기의 하드웨어 구현을 기술한다. 설계된 위상 연산기는 CORDIC(COordinate Rotation DIgital Computer) 알고리듬의 vectoring mode를 이용하여 arctangent 연산을 수행하며, 처리량을 증가시키기 위해 pipelined 구조를 적용하였다. 고정 소수점 MATLAB 모델링과 시뮬레이션을 통해 최적 비트 수와 반복 횟수를 결정하였다. 설계된 위상 연산기는 MATLAB/Simulink와 FPGA 연동을 통해 하드웨어 동작을 검증하였으며, TSMC 0.18-${\mu}m$ CMOS 셀 라이브러리로 합성하여 약 16,000 게이트로 구현되었고, 200MHz@1.8V로 동작하여 9.6 Gbps의 연산 성능을 갖는 것으로 평가되었다.

Keywords

References

  1. S. Hussmann, T. Ringbeck, and B. Hagebeuker, "A performance review of 3D TOF vision systems in comparison to stereo vision systems," in Stereo Vision. Vienna, Austria: I-Tech Edu. Publ., ch. 7, pp. 103-120, 2008.
  2. 호요성, "다시점 카메라와 깊이 카메라를 이용한 3 차원 실감방송 콘텐츠 제작,"전자공학회지, 제38권 2호, pp. 44-49, 2011.
  3. Jongenelen, A.P.P., "Development of a Compact, Configurable, Real-time Range Imaging System," Ph.D dissertation. School of Eng. Victoria University of Wellington, 2010.
  4. S. Hussmann, T. Edeler, "Pseudo 4-phase shift algorithm for performance enhancement of 3D-TOF vision systems," IEEE Trans. Instrum. Meas., vol. 59, no. 5, pp. 1175-1181, May 2010. https://doi.org/10.1109/TIM.2010.2040881
  5. S.B. Gokturk, H. Yalcin, and C. Bamji, "A time-of-flight depth sensor, system description, issues and solutions," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, 2004.
  6. Jongenelen, A.P.P., Bailey, D.G., Payne, A.D., Carnegie, D.A., Dorrington, A.A., "Efficient FPGA Implementati on on Homodyne-Based Time-of-Flight Range Imaging," Journal of Real-Time Image Processing, Special Issue, 2010.
  7. Jongenelen, A.P.P., Carnegie, D.A., Dorrington, A.A., Payne, A.D., "Heterodyne Range Imaging in Real-time," Proceedings of International Conference on Sensing Technology, Tainan, pp. 57-62, 2008.
  8. J. E. Volder, "The CORDIC trigonometric computing technique," IRE Transactions on Electronic Computing, vol. EC-8, no. 3, pp. 330-334, 1959. https://doi.org/10.1109/TEC.1959.5222693
  9. R. Gutierrez, V. Torres, J. Valls, "FPGA-implementation of atan(Y/X) based on logarithmic transformation and LUT-based techniques," Journal of Systems Architecture, volume 56. issue 11, pp. 588-596, 2010. https://doi.org/10.1016/j.sysarc.2010.07.013
  10. M. Saber, Y. Jitsumatsu, T. Kohda, "A low- power implementation of arctangent function for communication application using FPGA," Fourth International Workshop on Signal Design and its Applications in Communications (IWSDA'09), pp. 60-63, 2009.
  11. B.Lakshmi and A.S. Dhar, "CORDIC Architec- tures: A Survey," in Hindawi Publishing Corporation, VLSI Design, Volume 2010, Article ID 794891, 19 pages, 2010.
  12. Richard P. Brent, H.T. Kung, "A Regular Layout for Parallel Adders," IEEE Transactions on Computers, vol. C-31, no. 3, pp. 260-264, 1982. https://doi.org/10.1109/TC.1982.1675982
  13. Raphael A. Camponogara Viera, Paulo Cesar C. de Aguirre, Leonardo Londero de Oliveira and Joao Baptista Martins, "Iterative Mode Hardware Implementation of CORDIC Algorithm," in Proceeding of the 26th South Symposium on Microelectronics (SIM 2011), 2011.
  14. D. Ghai, K. Singh, "Comparative Analysis of Various CORDIC Techniques," M.S dissertation. Department of Electronic and Communications Engineering Thapar University, Patiala-137004, India, 2011.
  15. D.-M. Ross, S. Miller, M. Sima, and C. Crawford, "Design Rules for Implementing CORDIC on FPGAs," in Proceedings of the 13th IEEE Pacific Rim Conference on Commu- nications, Computers and Signal Processing (PacRim 2011). Victoria, B.C., Canada, pp. 797-802, 2011.

Cited by

  1. Differential CORDIC-based High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor vol.18, pp.3, 2014, https://doi.org/10.6109/jkiice.2014.18.3.643