DOI QR코드

DOI QR Code

Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process

  • Jun, Tae-Sung (Korea National University of Transportation, Civil. Environmental and Transportation Engineering) ;
  • Park, No-Hyung (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology) ;
  • So, Dea-Sup (National Nanotechnology Policy Center, Korea Institute of Science and Technology Information (KISTI)) ;
  • Lee, Joon-Woo (National Nanotechnology Policy Center, Korea Institute of Science and Technology Information (KISTI)) ;
  • Lim, Hak-Sang (Department of Bio & Environmental Engineering, Semyung University) ;
  • Ham, Heon (Korea National University of Transportation, Civil. Environmental and Transportation Engineering) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2012.12.28
  • Accepted : 2013.02.01
  • Published : 2013.02.28

Abstract

Catalyst-free graphene nano-sheets without substrates have been synthesized using fullerene and a high direct current (dc) pulse in the spark plasma sintering (SPS) process. Graphene nano-sheets were synthesized directly in the gas phase of carbon atoms which are generated from fullerene at a temperature of $600^{\circ}C$. Characterization has been carried out by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Keywords

References

  1. D.R. Dreyer, R.S. Ruoff and C.W. Bielawski, "From conception to realization: An historial account of graphene and some perspectives for its future", Angewandte Chemie International Edition 49 (2010) 9336. https://doi.org/10.1002/anie.201003024
  2. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li and D. Wu, "Graphene-on-silicon schottky junction solar cells", Adv. Mater. 22 (2010) 2743. https://doi.org/10.1002/adma.200904383
  3. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y. Kim, K.S. Kim, B. Ozyilmaz, J. Ahn, B.H. Hong and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol. 5 (2010) 574. https://doi.org/10.1038/nnano.2010.132
  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, "Electric field effect in atomically thin carbon films", Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
  5. A.K. Geim and K.S. Novoselov, "The rise of graphene", Nature Mater. 6 (2007) 183. https://doi.org/10.1038/nmat1849
  6. D. Wei and Y. Liu, "Controllable synthesis of graphene and its applications", Adv. Mater. 22 (2010) 3225. https://doi.org/10.1002/adma.200904144
  7. T.G. Kim, Y.H. Shin, H. Cho and J.K. Kim, "Synthesis of transparent diamond-like carbon film on the glass by radiofrequency plasma enhanced chemical vapor deposition", J. Korean Crystal Growth and Crystal Technology 22(4) (2012) 190. https://doi.org/10.6111/JKCGCT.2012.22.4.190
  8. K.H. Choi, I.J. Yoo, H.S. Lee, K.H. Lee and D.C. Lim, "Fabrication of various carbon nanostructures by using different catalysts", Journal of the Korean Crystal Growth and Crystal Technology 20(3) (2010) 133. https://doi.org/10.6111/JKCGCT.2010.20.3.133
  9. W. Kratchmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffmann, "Solid C60: a new form of carbon", Nature 347 (1990) 354. https://doi.org/10.1038/347354a0
  10. J.B. Howard, J.T. McKinnon, Y. Makarovsky, A.L. Laeur and M.E. Johnson, "Fullerenes C60 and C70 in flames", Nature 352 (1991) 139. https://doi.org/10.1038/352139a0
  11. J.B. Howard, K.D. Chowdhury and J.B. Vander Sande, "Carbon shells in flames", Nature 370 (1994) 603. https://doi.org/10.1038/370603a0
  12. B. Chase and P.J. Fagan, "Substituted C60 molecuels: a study in symmetry reduction", J. Am. Chem. Soc. 114 (1992) 2252. https://doi.org/10.1021/ja00032a048
  13. B. Chase, N. Herron and E. Holler, "Vibrational spectroscopy of fullerenes (C60 and C70) temperature dependent studies", J. Phys. Chem. 96 (1992) 4262. https://doi.org/10.1021/j100190a029
  14. B. Zhang, W.H. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji and R.S. Ruoff, "Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils", ACS Nano 6(3) (2012) 2471. https://doi.org/10.1021/nn204827h
  15. Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang and J. Hou, "Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources", ACS Nano 5(4) (2011) 3385. https://doi.org/10.1021/nn200854p
  16. H. Ham, N.-H. Park, I. Kang, H.W. Kim and K.B. Shim, "Catalyst-free fabrication of graphene nanosheets without substrates using multiwalled carbon nanotubes and a spark plasma sintering", Chem. Commun. 48 (2012) 6672. https://doi.org/10.1039/c2cc31461d
  17. S. Dimovski, A. Nikitin, H. Ye and Y. Gogotsi, "Synthesis of graphite by chlorination of iron carbide at moderate temperatures", J. Mat. Chem. 14 (2004) 238. https://doi.org/10.1039/b311938f
  18. M. Armandi, B. Bonelli, I. Bottero, A.C. Otero and E. Garrone, "Synthesis and characterization of ordered porous carbons with potential applications as hydrogen storage media", Microporous Mesoporous Mater 103 (2007) 150. https://doi.org/10.1016/j.micromeso.2007.01.049
  19. C.N. Mbileni, F.F. Princloo, M.J. Witcomb and N.J. Covile, "Synthesis of mesoporous carbon supports via liquid impregnation of polystyrene onto a MCM-48 silica template", Carbon 44 (2006) 1476. https://doi.org/10.1016/j.carbon.2005.12.012
  20. K. Qin, S.Y. Xie, Z.Y. Jiang, X.H. Zhang, Z.X. Xie, R.B. Huang and L.S. Zheng, "Low temperature solvothermal synthesis of crumpled carbon nanosheets", Carbon 42 (2004) 1737. https://doi.org/10.1016/j.carbon.2004.03.008
  21. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price and J.M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature 458 (2009) 872. https://doi.org/10.1038/nature07872
  22. L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes", Nature 458 (2009) 877. https://doi.org/10.1038/nature07919
  23. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa and P.C. Eklund, "Raman scattering from high-frequency phonons in supported n-graphene layer films", Nano Lett. 6 (2006) 2667. https://doi.org/10.1021/nl061420a

Cited by

  1. The study of thermal properties of graphene/Cu foam hybrid structures vol.23, pp.5, 2013, https://doi.org/10.6111/JKCGCT.2013.23.5.235
  2. Application of rate-controlled sintering into the study of sintering behavior of boron carbide vol.25, pp.1, 2015, https://doi.org/10.6111/JKCGCT.2015.25.1.006