DOI QR코드

DOI QR Code

Fabrication and characterization of boron free E-glass fiber compositions

붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구

  • Lee, Ji-Sun (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Lee, Yo-Sep (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Hwang, Jonghee (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Hyun, Soong-Keun (Department of Materials Science and Engineering, Inha University)
  • 이지선 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 이요셉 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 이미재 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 김진호 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 현승균 (인하대학교 금속공학과)
  • Received : 2012.11.12
  • Accepted : 2012.12.14
  • Published : 2013.02.28

Abstract

E-glass fiber is the most widely used glass fiber for reinforced composite materials of aircrafts, automobiles and leisure equipments. But recently researches are being progressed to reduce boric oxide from 8 % to 0 (zero), as is called 'Boron free E-glass', because of increasing material cost, environmental problem, and improving chemical resistance and mechanical properties of E-glass fiber. In this study, we fabricated the bulk glass and fiber glass of 'Boron free E-glass (BF) compositions', and characterized thermal properties and optical properties. 'Boron free E-glass (BF)' was obtained by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different $Al_2O_3$ compositions 5~10 %. We obtained transparent clear glass with high visible light transmittance value of 81~86 %, and low thermal expansion coefficient of $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$ and softening point of $907{\sim}928^{\circ}C$. For the chemical resistance test of 'BF' fiber samples, we identified that the higher alumina contents gives the better corrosion resistance of glass fiber.

E-glass 섬유는 항공기, 자동차, 레져기구의 복합재료 보강용으로 가장 널리 사용되는 유리섬유이다. 그러나 최근 E-glass 섬유의 원재료비 상승, 환경문제 및 화학적 저항성과 기계적 특성을 향상시키기 위해 산화붕소 함량을 8 %에서 0(제로)까지 감소시키는(소위 'Boron free E-glass'라고 불리는) 연구가 진행되고 있다. 본 연구에서는 'BF(Boron free E-glass)' 조성의 벌크유리와 섬유유리를 제조하고, 열적특성 및 광학적특성을 평가하였다. 5~10 %의 서로 다른 알루미나 함량을 갖는 배치를 $1550^{\circ}C$에서 2시간 용융하여 'BF(Boron free E-glass)'가 얻어졌고, 81~86 %의 높은 가시광투과율, $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$의 낮은 열팽창계수, $907{\sim}928^{\circ}C$의 연화점을 갖는 투명하고 맑은 유리가 얻어졌다. 'BF' 섬유 시편에 대한 화학적내구성 시험에 있어서는 알루미나 함량이 높아질수록 더 좋은 침식저항성을 나타냄을 확인할 수 있었다.

Keywords

References

  1. B.H. Kim, "Glass technology", Vol. 3 (Chungmoon Gak, Seoul, Korea, 2009) p. 10.
  2. S.W. Choi, "Glass fibers", Korea Institute of Science and Technology Information (2010) 2.
  3. T.Y. Lim, S.S. Jung, J. Hwang and J.H. Kim, "A study on the fabrication of soda-lime glass by using refused coal ore and its properties", Journal of the Korean Crystal Growth and Crystal Technology 20(1) (2010) 44. https://doi.org/10.6111/JKCGCT.2010.20.1.043
  4. J.F. Sproull, "Fiber glass compositions", U.S. Patent 4,542,106, 17 Sept (1985).
  5. W.L. Eastes, "Boron-free glass fibers", U.S. Patent 5,789,329, 4 Aug (1998).
  6. F.T. Wallenberger, J.C. Watson and H. Li, "Glass fibers", Vol. 21 (ASM Handbook, 2001) p. 28.
  7. B.H. Kim, "Glass technology", Vol. 3 (Chungmoon Gak, Seoul, Korea, 2009) p. 430.
  8. H.J. Jung, "Fusion ceramic materials (text book for high school)", Vol. 1 (Ministery of Education Science and Technology, 2003) p. 60.
  9. J.H. Kim, H.H. Jung, J. Hwang, Y. Cho and T.Y. Lim, "Properties of $TiO_2$ thin films fabricated with surfactant by a sol-gel method", Journal of the Korean Crystal Growth and Crystal Technology 20(6) (2010) 268. https://doi.org/10.6111/JKCGCT.2010.20.6.267
  10. F.T. Wallenberger, R. Naslain, J.B. Macchesney and H.D. Ackler, "Advanced Inorganic fibers", Vol. 1 (Kluwer Academic Publishers, London, 1999) p. 137.
  11. B.H. Kim, "Glass technology", Vol. 3 (Chungmoon Gak, Seoul, Korea, 2009) p. 380.
  12. T.Y. Lim, H.W. Ku, J. Hwang J.H. Kim and J.K. Kim, "A study on the fabrication of foamed glass by using refused coal ore and its physical properties", Journal of the Korean Crystal Growth and Crystal Technology 21(6) (2011) 268. https://doi.org/10.6111/JKCGCT.2011.21.6.266
  13. F.T. Wallenberger, J.C. Watson and H. Li, "Glass fibers", Vol. 21 (ASM Handbook, 2001) p. 28.
  14. H.J. Jung, "Fusion ceramic materials (text book for high school)", Vol. 1 (Ministery of Education Science and Technology, Korea, 2003) p. 193.
  15. F.T. Wallenberger, R. Naslain, J.B. Macchesney and H.D. Ackler, "Advanced inorganic fibers", Vol. 1 (Kluwer Academic Publishers, London, 1999) p. 147.

Cited by

  1. Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore vol.23, pp.4, 2013, https://doi.org/10.6111/JKCGCT.2013.23.4.180
  2. Preparation and properties of glass fiber-reinforced endodontic (root canal therapy) posts vol.25, pp.3, 2015, https://doi.org/10.6111/JKCGCT.2015.25.3.105