DOI QR코드

DOI QR Code

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m)

유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계

  • 성현경 (상지대학교 컴퓨터정보공학부)
  • Received : 2012.11.29
  • Accepted : 2013.02.12
  • Published : 2013.02.28

Abstract

In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

본 논문에서는 유한체 GF($2^m$)상에서 모든 항에 0이 아닌 계수가 존재하는 기약 다항식을 이용한 두 다항식에 대한 승산 알고리즘을 제시하였으며, 제시된 승산 알고리즘을 이용하여 고속의 병렬 입-출력 모듈구조의 승산기를 설계하였다. 제시한 승산기의 구성은 $m^2$개의 동일한 기본 셀들로 설계되었으며, 제시한 기본 셀은 2입력 XOR 게이트와 2입력 AND 게이트로 구성하였다. 셀에 래치를 사용하지 않았으므로 회로가 간단하며, 셀당 지연시간이 $D_A+D_X$이다. 본 연구에서 제안한 승산기는 규칙성과 셀 배열에 의한 모듈성을 가지므로 m이 큰 회로의 확장이 용이하며 VLSI회로 실현에 적합할 것이다.

Keywords

References

  1. B. A. Laws and C. K. Rushforth, "A Cellular Array Multiplier for $GF(2^m)$," IEEE Trans. Computers, vol. C-20, pp. 1573-1578, Dec. 1971. https://doi.org/10.1109/T-C.1971.223173
  2. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, "A VLSI Design of a Pipelining Reed-Solomon Decoder," IEEE Trans. Computers, vol. C-34, pp. 393-403, May 1985. https://doi.org/10.1109/TC.1985.1676579
  3. C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, "VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$," IEEE Trans. Computers, vol. C-34, pp. 709-717, Aug. 1985. https://doi.org/10.1109/TC.1985.1676616
  4. S. B. Wicker and V. K. Bhargava, Reed- Solomon Codes and Their Applications, IEEE Press, 1994.
  5. 3rd Generation Partnership Project., "Technical specification group GSM/EDGE radio access network; channel coding (release 5)," Tech. Rep. 3GPP TS 45.003 V5.6.0, June 2003.
  6. C. K. Koc and B. Sunar, "Low Complexity Bit- Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998. https://doi.org/10.1109/12.660172
  7. C. S. Yeh, I. S. Reed, and T. K. Truong, "Systolic Multipliers for Finite Fields $GF(2^m)$," IEEE Trans. Computers, vol. 33, no. 4, pp. 357-360, Apr. 1984. https://doi.org/10.1109/TC.1984.1676441
  8. T, Itoh and S. Tsujii, "Structure of Parallel Multipliers for a Class of Fields $GF(2^m)$," Inform. Comp., vol. 83, pp. 21-40, 1989. https://doi.org/10.1016/0890-5401(89)90045-X
  9. C. L. Wang and J. L. Lin, "Systolic Array Implementation of Multipliers for Finite Fields $GF(2^m)$," IEEE Trans. Circuits and Systems, vol. 38, no. 7, July 1991.
  10. C. Y. Lee, E.H. Lu, and J. Y. Lee, "Bit Parallel Systolic Multipliers for $GF(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials," IEEE Trans. Computers, vol. 50, no. 5, pp. 385-392, May 2001. https://doi.org/10.1109/12.926154
  11. Y. Wang, Z. Tian, X. Bi and Z. Niu, "Efficient Multiplier over Finite Field Represented in Type II Optimal Normal Basis," Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA '06), 2006.
  12. N. Petra, D. de Caro and A. G.M. Strollo, "A Novel Architecture for Galois Fields $GF(2^m)$ Multipliers Based on Mastrovito Scheme," IEEE Trans. Computers, vol. 58, no. 11, pp. 1470-1483, Nov. 2007.
  13. H. Wu and H. A. Hasan and L. F. Blake, "New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis," IEEE Trans. Computers, vol. 47, no. 11, pp. 1223-1234, Nov. 1998. https://doi.org/10.1109/12.736433
  14. A. Halbutogullari and C. K. Koc, "Mastrovito Multiplier for General Irreducible Polynomials," IEEE Trans. Computers, vol. 49, no. 5, pp. 503-518, May 2000. https://doi.org/10.1109/12.859542
  15. R. Lidl, H. Niederreiter and P. M. Cohn, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983.
  16. S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989.
  17. E. D. Mastrovito, "VLSI Design for Multiplication on Finite Field $GF(2^m)$," Proc. International Conference on Applied Algebraic Algorithms and Error-Correcting Code, AAECC-6, Roma, pp. 297-309, July 1998.
  18. A. R. Masoleh and M. A. Hasan, "A New Construction of Massey-Omura Parallel Multiplier over $GF(2^m)$," IEEE Trans. Computers, vol. 51, no. 5, pp. 511-520, May 2002. https://doi.org/10.1109/TC.2002.1004590
  19. S. Kumar, T. Wollinger and C. Paar, "Optimum Digit Serial $GF(2^m)$ Multipliers for Curve- Based Cryptography," IEEE Trans. Computers, vol. 55, no. 10, pp. 1306-1311, Oct. 2006. https://doi.org/10.1109/TC.2006.165
  20. A. H. Namin, H. Wu and M. Ahmadi, "Comb Architectures for Finite Field Multiplication in $IF_{2^m}$," IEEE Trans. Computers, vol. 56, no. 7, pp. 909-916, July 2007. https://doi.org/10.1109/TC.2007.1047