DOI QR코드

DOI QR Code

Channel Assignment for RFID Readers in Dense Reader Environments

밀집리더환경에서 RFID 리더를 위한 채널 할당

  • 손석원 (호서대학교 벤처전문대학원)
  • Received : 2012.08.07
  • Accepted : 2013.02.04
  • Published : 2013.02.28

Abstract

Reader-to-reader interference in RFID system is occurred due to the use of limited number of frequencies, and this is the main cause of read rate reduction in the passive RFID tags. Therefore, in order to maximize the read rate under the circumstances of limited frequency resources, it is necessary to minimize the frequency interference among RFID readers. This paper presents a hybrid FDM/TDM constraint satisfaction problem models for frequency interference minimization problems of the RFID readers, and assigns optimal channels to each readers using conventional backtracking search algorithms. A depth first search based on backtracking are accomplished to find solutions of constraint satisfaction problems. At this moment, a variable ordering algorithm is very important to find a solution quickly. Variable ordering algorithms applied in the experiment are known as efficient in the graph coloring. To justify the performance of the proposed constraint satisfaction problem model, optimal channels for each readers in the passive UHF RFID system are allocated by using computer simulation satisfying various interference constraints.

RFID 시스템에서 리더간 간섭은 일정한 서비스 영역에서 제한된 주파수를 사용하기 때문에 발생하며 수동형 태그의 가독율을 떨어뜨리는 주요 원인이 된다. 그러므로 제한된 주파수 자원 환경에서 가독율을 최대화하려면 리더간 주파수 간섭을 최소화시켜야 한다. 본 논문에서는 RFID 리더간 주파수 간섭 최소화 문제를 FDM/TDM 혼합방식의 제약만족문제로 모델링하고 기존의 백트래킹 탐색 알고리즘을 적용하여 각각의 리더에게 최적의 채널을 할당한다. 제약 만족 문제의 해를 구하기 위해서 백트래킹을 이용한 깊이우선탐색을 실행하는데 이 때 탐색되는 노드의 순서를 효과적으로 배열하는 변수 순서화 방법이 중요하다. 본 논문의 실험에서 적용된 변수 순서화 알고리즘들은 그래프 채색에 효과적인 것으로 알려져 있다. 제안한 제약만족문제 모델의 성능을 입증하기 위하여 수동형 UHF RFID 시스템 환경에서 시뮬레이션하여 간섭조건을 만족하면서 각각의 리더에게 최적의 채널을 할당한다.

Keywords

References

  1. D.S. Zhou, Z. Luo, E. Wong, C.J. Tan, and J. Luo, "Interconnected RFID Reader Collision Model and its Application in Reader Anti-collision," 2007 IEEE International Conference on RFID, pp.212-219, 2007.
  2. D.Y. Kim, J.G. Yook, H.G. Yoon and B.J. Jang, "Interference Analysis of UHF RFID Systems," Progress in Electromagnetics Research B, Vol.4, pp.115-126, 2008. https://doi.org/10.2528/PIERB08010607
  3. M. Buettner and D. Wetherall, "An Empirical Study of UHF RFID Performance," MobiCom''08, pp. 14-18, Sep. 2008.
  4. M.V. Bueno-Delgado, J. Vales-Alonso, C. Angerer and M. Rupp, "A Comparative Study of RFID Scheduler in Dense Reader Environments," Proc. of IEEE ICIT 2010, pp. 1353-1358, Mar. 2010.
  5. H. Seo and C. Lee, "A New GA-based Resource Allocation Scheme for a Reader-to-reader Interference Problem in RFID Systems," Proc. of IEEE ICC 2010, pp. 1-5, May 2010.
  6. W.K. Hale, "Frequency Assignment: Theory and Applications," Proceedings of the IEEE, vol. 68, pp. 1497-1514, 1980. https://doi.org/10.1109/PROC.1980.11899
  7. Y.H. Cho and J.G. Kook, "Energy Effective Tag Anti-collision Protocol for Mobile RFID System," Journal of The Korea Society of Computer and Information, Vol. 17, No. 2, pp.207-214, Feb. 2012. https://doi.org/10.9708/jksci.2012.17.2.207
  8. S. Sohn, "A Backtracking Search Framework for Constraint Satisfaction Optimization Problems," The KIPS Transactions:Part A, Vol. 18A, No. 3, pp. 115-122, Jun. 2011. https://doi.org/10.3745/KIPSTA.2011.18A.3.115
  9. M. Carlsson, M. Grindal, "Automatic Frequency Assignment for Cellular Telephone Using Constraint Satisfaction Techniques," Proceedings of the Tenth International Conference on Logic Programming, pp. 647-665, 1993.
  10. J.P. Walsher, "Feasible Cellular Frequency Assignment Using Constraint Programming Abstractions," Proceedings of the Workshop on Constraint Programming Applications, 1996.
  11. M. Yokoo, K. Hirayama, "Frequency Assignment for Cellular Mobile Systems Using Constraint Satisfaction Techniques," IEEE Int'l Proceedings of Vehicular Technology Conferences, 2000.
  12. E. Tsang, Ed., "Foundations of Constraint Satisfaction," Academic Press, 1993.
  13. F. Rossi, P. van Beek, and T. Walsh (Eds.), "Handbook of Constraint Programming," Elsevier, 2006.
  14. R.J. Wallace, "Determining the principles underlying performance variation in csp heuristics," International Journal on Artificial Intelligence Tools, Vol. 17 Issue 5, pp.857-880, Oct. 2008, https://doi.org/10.1142/S0218213008004199
  15. F. Bacchus and P. van Run, "Dynamic Variable Ordering in CSPs," CP '95 Proceedings of the First International Conference on Principles and Practice of Constraint Programming, pp. 258 - 275, 1995.
  16. I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh, "An empirical study of dynamic variable ordering heuristics for the constraint satisfaction problem," in Principles and Practice of Constraint Programming, pp. 179-193, 1996.
  17. E. C. Freuder, "A sufficient condition for backtrack-free search," Journal of ACM, vol. 29, no. 1, pp. 24-32, 1982. https://doi.org/10.1145/322290.322292
  18. D. Brelaz, New Methods to Color the Vertices of a Graph, Communication of the ACM 22(4), pp.251-256, 1979. https://doi.org/10.1145/359094.359101
  19. S. Sohn, "Variable Ordering Algorithms Using Problem Classifying Rule," Journal of The Korea Society of Computer and Information, Vol. 16, No. 4, Apr. 2011.
  20. C. Bessiere and J.-C. Regin, "MAC and combined heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems," Lecture Notes in Computer Science 1118, pp.61-75, 1996.
  21. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, "Boosting Systematic Search by Weighting Constraints," In Proceeding of the ECAI, pp.146-150, 2004.