
J Korea Industr Inf Syst Res Volume 18 Number 1

http://dx.doi.org/10.9723/jksiis.2013.18.1.025

- 25 -

Derivations of Single Hypothetical

Don't-Care Minterms Using the

Quasi Quine-McCluskey Method

Eungi Kim*
*

Abstract Automatically deriving only individual don't-care minterms that can effectively
reduce a Boolean logic expressions are being investigated. Don't-care conditions play an
important role in optimizing logic design. The type of unknown don't-care minterms that
can always reduce the number of product terms in Boolean expression are referred as single
hypothetical don't-care (S-HDC) minterms. This paper describes the Quasi
Quine-McCluskey method that systematically derives S-HDC minterms. For the most part,
this method is similar to the original Quine-McCluskey method in deriving the prime
implicants. However, the Quasi Quine-McCluskey method further derives S-HDC minterms
by applying so-called a combinatorial comparison operation. Upon completion of the
procedure, the designer can review generated S-HDC minterms to test its appropriateness
for a particular application.

Key Words : minterm, don't-care condition, Quine-McCluskey method, Karnaugh Map

1. Introduction

The number of product terms in Boolean

expressions is closely related to logic-based designs

[1]. Because of this, the designers often face the

challenge of finding the most efficient way to

optimize and manipulate logic based designs. In

doing so, the process can involve not only finding

an equivalent logic expression, but it can also

involve identifying specific conditions in which

Boolean expressions can be even further simplified.

These types of elements in a logical design could

be considered as a "degree of freedom" [2][3][8]. In

such cases, a user is allowed to optimize the

specified design based on the degree of freedom.

Therefore, exploring alternative solutions is

* Department of Information Communication Namseoul University,
 South Korea(e-mail: eungikim68@daum.net)

desirable since it may produce optimal Boolean

expressions at the end.

More specifically, such a degree of freedom is

usually specified in terms of "don't-care conditions".

In other words, don't-care conditions are basically

certain cases where input or output conditions can

never occur.

Until recently, different types of don't-care

conditions have been identified in literature

[4][5][6][7][8]. In almost all instances, don't-cares

are usually provided by the user or derived from a

particular environment. They are also derived or

observed from particular interconnection of circuit

logic gates.

These conditions should be properly identified and

labeled as a don't-care condition during the initial

design stage. Provided that a Boolean expression is

in sum of product (SOP) form, the proposed method

finds special type of don't-care minterms.

- 26 -

The type of don't-care minterms which this

method is concerned with is one that can always

combine with some other Boolean expression

product terms. In effect, it produces less product

terms in the end. This special type of don't-care

conditions is referred as a single hypothetical

don't-care (S-HDC) minterm in this paper. Unlike a

typical don't-care minterm, each S-HDC minterm is

guaranteed to minimize existing Boolean logic

expressions by eliminating at least one product

term.

In pursuit of deriving S-HDC minterms, we

examine the applicability of the Karnaugh Map [9]

and the Quine-McCluskey method [10]. These

Boolean minimization methods, which are extremely

popular, are relatively simple to use. These

techniques are widely discussed in digital design

books such as [1][11][12]. Until recently, there have

been various attempts to explore both methods in

order to extend and optimize these techniques

[13][14][15]. In this paper, the original

Quine-McCluskey method [10] was slightly modified

for ease of use. At the same time, the method has

been modified in order to derive S-HDC minterms.

The advantage of the Quine-McCluskey method is

that it is systematic, and it can handle a greater

number of variables compared to the Karnaugh

Map.

The proposed method that derives S-HDC

minterms consists of two separate parts. The first

part comprises of a method to minimize Boolean

expressions. The method is basically based on the

Quine-McCluskey method. The second part

comprises of a method to derive S-HDC minterms

based first part’s result. Collectively, the author

calls the procedures as the Quasi Quine-McCluskey

method, and the method is described subsequently.

2. Definitions

The following terms are essential in order to

understand the author's Quasi Quine-McCluskey

method. These terms will be used throughout this

paper.

Implicant minterm is a minterm which belongs to

a finite group of literals. Each implicant is a

product of literals. For example, if xn and xn+1 are

implicant minterms, then the difference between xn

and xn+1 must be a power of 2.

Implicant group is a groups of minterms which

are used to calculate prime implicants and derive

S-HDC minterm derivation. It is expressed as

(xn,xn+1) di.

M-diff (minterm difference) is the differing values

between member minterms of an implicant group.

For an implicant with two member minterms,

M-diff, denoted as d, is the difference between x1

and x2.

Member minterms refer to minterms which

belong to an implicant group. The size of member

minterm expands by a factor of 2 in accordance

with iteration increase.

Prime implicant is a type of implicant that no

longer remains as an implicant if any of its literals

in product terms is removed.

Combinatorial Comparison Operation is an

operation that is performed to derive candidate

S-HDC minterms. Combinatorial comparison operation

refers to the combinatorial based operations of

addition and subtraction. The operation specifically

involves unmatched member minterms of implicant

group with its M-diff values.

3. The Karnaugh Map Method

First, a detailed understanding of the notion of

S-HDC minterm is useful prior to understanding

the S-HDC derivation method. For this purpose,

the Karnaugh Map method is useful for discussing

the idea behind the S-HDC minterms. The

Karnaugh Map is a widely used Boolean

- 27 -

minimization method. Because of its simplicity of

representation, we can use the Karnaugh Maps to

identify S-HDC minterms graphically. For an

illustration, consider a Boolean function problem ∑

(3,6,7,15). The Karnaugh Map representation of

these minterms and the minimized Boolean

expression are shown in Figure 1.

Since S-HDC minterms have the special

characteristics of combining to the existing

minterms, there are cells on this map which would

have combined if they were hypothetically marked

as "1". S-HDC minterms are marked with "X" on

the Karnaugh Map with an enclosing circle. As

shown in Figure 2, for this particular Boolean

function, three S-HDC minterms are possible .

<Figure 1> Karnaugh Map Representation of ∑(3,6,7,15)

In each case, if S-HDC minterms are used, the

final Boolean expression will end-up with fewer

literals. The reason is that as the group cell size

of Karnaugh Map increases, the number of literals

in each product term will decrease proportionally.

For example, for a 4-variable Boolean function, if

groups of 4 member cells form a prime implicant,

then the number of literals in a term is 3. If a

group of 8 member cells form a prime implicant,

then the number of literals in a product term is 2.

Because a S-HDC minterm plays the role of

combining other implicant groups, it reduces the

number of product terms.

(a) S-HDC Minterm Value 12

(b) S-HDC Minterm Value 11

(c) S-HDC Minterm Value 14

- 28 -

<Figure 2> Karnaugh Map with S-HDC minterms

In essence, for n number of Boolean variable

problems, 2
n
combinations of true conditions can be

marked as "1" on the Karnaugh Map. Based on

this map, remaining cells can potentially become a

S-HDC minterm. Using the Karnaugh Map, it is a

relatively trivial task to visually spot S-HDC

minterms. The limitation of the above Karnaugh

Map approach is that it is limited to Boolean

functions that have small number of variables. For

larger variable problems, a more systematic

approach is necessary in order to find S-HDC

minterms.

4. The Quasi Quine-McCluskey Method

Part I

The first part of this method is to minimize a

given Boolean function problem. The first part of

the method closely resembles the Quine-McCluskey

method as shown in [10]. Since the original

Quine-McCluskey method is less efficient in terms

of comparing implicants, an improved version of the

Quine-McCluskey method is suggested here. The

first part of Quasi Quine-McCluskey Method

method is similar to the method suggested by [14].

Let us consider the Boolean function ∑(3,6,7,15)

once again. The following procedures are essential

steps for the first part.

Step 1. Place minterms into different blocks

based on the number of binary 1's. As in the

Quine-McCluskey method, minterms based on

number of 1's in the binary form need to be

grouped into different blocks. In this paper, we refer

to these types of groups as a bit-numbered block.

For example, in the left side of Table 1, minterms

for the Boolean function ∑(3,6,7,15) are grouped

together as individual bit-numbered blocks.

Step 2. Starting from the lowest bit numbered

block, group the minterms by comparing each

minterm in one block to adjacent bit numbered

blocks. A valid implicant minterm is formed only if

the M-diff is a power of 2. M-diff is the differing

values between member minterms of an implicant

group. Thus, a valid implicant group in Iteration I

would consist of two member minterms, and their

differing value would be 1, 2, 4, etc. The result of

iteration is shown on the right side of Table 1.

For example, as a result of the first comparison,

the implicant minterm that is produced is (3,7)4. In

this case, 4, which is the value outside of the

parenthesis, is the M-diff. Note the M-diff is valid

because the difference is a power of 2. In terms of

a binary number, a valid M-diff indicates that two

member minterms differ by only one bit.

The result shown in this table is produced by

comparing every minterms in each bit-numbered

block to its adjacent block. When comparing, the

minterm values in the next higher bit-numbered

block needs to be higher than the minterm values

in the current bit-numbered block. If it is not

higher, then an implicant group cannot be formed,

and a M-diff value does not have to be obtained

since the procedure can be skipped.

- 29 -

<Table 1> Iteration I Result for ∑(3,6,7,15)

Bit-

Numbered
Block

#

Min-

term

Bit-

Numbere
d Block

#

Iteration I

1
3
6 1

(3,7) 4 **
(6,7) 1 **

2 7
2 (7,15) 8 **

3 15

Step 3. Continue to compare minterm differences

from each block to identify prime implicants until

all groupings become complete. As in the

Quine-McCluskey method, the iterations need to

continue until all prime implicants can are derived.

In this example, since each minterm from one block

is different from its adjacent block, no further

iteration is required. This procedure derived three

prime implicants as a result. Each prime implicants

are marked with "**" in Table 1.

Step 4. Use a prime implicant chart to select

prime implicants. The Quine-McCluskey method

requires a prime implicant chart in order to find

minimal amount of covering prime implicants. The

Quasi Quine-McCluskey method is not any different

in this respect. The implicant chart for this problem

is shown in Table 2. The goal in this step is to

find a minimum amount of prime implicants to

cover every minterm. In this case, all of the prime

implicants must be selected to cover the minterms

which are listed on the top of the chart. Hence, all

of the prime implicants need to be selected in order

to cover the minterms which are placed on the top

horizontal cells in the table.

Step 5. Translate the selected prime implicants to

a Boolean final expression. Once prime implicants

are selected, the final result which is in implicant

minterm expression form should be rewritten in a

Boolean expression form. The translation can be

done by intersecting the largest member value from

the selected prime implicant with its M-diff values.

<Table 2> Prime Implicant Chart for ∑(3,6,7,15)

3 6 7 15

(3,7) 4 X X

(6,7) 1 X X

(7,15) 8 X X

For example, the largest member minterm for the

prime implicant (3,7)4 is 7, and the M-diff value is

4. Thus, "0111" intersecting "0100" would result in

"0x11". In essence, the "x" mark is used to cross

out the intersected 1's. "0x11" is equivalent to

Boolean product term a’cd. By converting all of the

remaining binary numbers back to Boolean product

terms, we end up with a’cd+a’bc+bcd in the end.

The proposed method differs from the

Quine-McCluskey method in a number of ways.

First, a decimal based scheme rather than a binary

based scheme is being used. Second, the proposed

method also avoids bit unnecessary in Iteration I.

The reason is that a comparison is necessary only

if minterms in higher bit-numbered block is greater

than the minterms in the lower adjacent

bit-numbered block. Lastly, in the higher iterations,

only M-diff values need to be matched instead of

comparing every implicant.

5. The Quasi Quine-McCluskey Method

Part II

The second part of the Quasi Quine-McCluskey

Method is to perform combinatorial comparison

operations in order to derive S-HDC minterms. In

this part, combinatorial comparison operations are

sequentially performed to generate all possible

S-HDC minterms. This list can be produced by

comparing prime implicants within each block and

also by comparing prime implicants to adjacent block.

For Boolean function ∑(3,6,7,15), only one

iteration is required. In Iteration I, prime implicants

- 30 -

are (3,7)4, (6,7)1 and (7,15)8. Formally, two implcant

minterms (x1,x2)d1 and (y1,y2)d2 can be combined to

form by following combinatorial comparison

operations: if one of these conditions (x1=y1 or

x1=y2 or x2=y1 or x2=y2) is true then, for each

unmatched member minterm, generate results by

adding-subtracting the M-diff from opposing side of

implicant group and the add M-diff from opposing

implicant group side. If two results are equal, then

the result is the S-HDC mitnerm.

For a detailed illustration of this procedure,

consider the pseudo code shown in Figure 3. First,

let us use variables a and b as temporary array

values. Two minterm members in an implicant

group imply that we need four arrays of a and b.

If we consider only a case where two member

minterms x1 and y1 having equal values, then the

possibilities can be specified using an algorithm

shown in this figure.

if x1=y1

{
a[1]=x2 - d2; b[1]= x2 - d1;
a[2]=x2 + d2; b[2]= x2 - d1;
a[3]=y2 - d2; b[3]= y2 + d1;
a[4]=y2 + d2; b[4]= y2 + d1;

}
function_mm (a,b); /* function call */
..
..
func_mm (int a[4], int b[4]);

for (int i=0; i < 4; i++)
{

for (int j=0; j < 4; j++)
{

if (a[i]=b[j])
cand_mm=i;

}
}

<Figure 3> A Pseudo Code for x1=y1 Condition

This pseudo code is applicable for the condition

where x1=y1. Additionally, similar steps need to be

taken for the condition x1=y2, x2=y1 and x2=y2. In

each case, the algorithm would need to call the

function func_mm in order to derive a correct

S-HDC minterm. Also notice that this code is

applicable only for Iteration I.

For a graphical illustration of this procedure,

consider Figure 4. This figure represents two pairs

of prime implicants which are being compared in

order to derive S-HDC minterms. In a nutshell, if

the results from one addition-subtraction operation

is exactly the same as the result of another

addition-subtraction operation, then the resulting

number becomes a S-HDC minterm.

After attempting these combinatorial comparisons,

if the resulting number is equal based on discrete

operations, then the number which is equal is a

S-HDC minterm. In this example, one of two

results, (3-1) or (3+1), must be equal to another

one of two results, (6-4) or (6+4). If (3-1) and

(6-4) are selected, then the result of these

operations are equal to each other since both

operations produces "2". Thus, this "2" must be

selected.

<Figure 4> Comparison Illustration of Two Pairs of

Prime Implicants

A more detailed example of this procedure is also

shown in Table 3. This table shows entire prime

implicant minterms and their corresponding

combinatorial comparison operations with other

implicant minterms. As shown, the member minterm

which are equal to another implicant minterm are

underlined. In each implicant comparison, we need

- 31 -

to verify whether the member minterm are in any

of implicant groups in the higher iteration. Since

neither of these cases are applicable, only Iteration I

is required.

<Table 3> The Combinatorial Comparison Operations

and the S-HDC Minterm Calculation

Index

#

Implicant

Groups
S-HDC Minterm Calculation

1
(3,7)4

(6,7)1

3-1=6-4

2 is a S-HDC minterm

2
(3,7)4

(7,15)8

3+8=15-4

11 is a S-HDC minterm

3
(6,7)1

(7,15)8

6+8=15-1

14 is a S-HDC minterm

S-HDC Minterms 2,11,14

6. S-HDC Minterm Calculation: Skip or

Perform

The previous example demonstrated a case where

only one iteration was required in order to find all

of prime implicants. Most often, however, additional

iterations are required. The Boolean function ∑

(0,1,3,4,5,7,12,13,15) requires two iterations as shown

in Table 4. For Iteration II, all possible

combinations without removing any duplicates

should be generated first. Then, some of the

implicant groups having only differences in M-diff

values need to be combined. In Iteration II, unlike

Iteration I, if the generated combination is not

combinable, then it is not a valid implicant group.

Therefore, it should be removed from the list.

In Table 4, the implicant groups (0,1,4,5)1 and

(0,4,1,5)4 are combined, forming (0,1,4,5)1,4. Thus,

(0,1,4,5)1 and (0,4,1,5)4 are both crossed out,

indicating that they have been combined. Also, note

that each prime implicant contains 4 member

minterms instead of two minterms. Similarly, the

implicant groups (1,3,5,7)2,4, (4,5,12,13)1,8, (5,7,13,15)

2,8 have been formed as a result of combining in

Iteration II. Same as the previous example, each

prime implicants is marked with "**" in this table.

<Table 4> Prime Implicants After Iteration I & II

for ∑(0,1,3,4,5,7,12,13,15)

Minterm Iteration I Iteration II

0
(0,1)1
(0,4)4

(0,1,4,5)1
(0,4,1,5)4
(0,1,4,5)1,4 **1

4

3
5
12

(1,3)2
(1,5)4
(4,5)1
(4,12)8

(1,3,5,7)2
(1,5,3,7)4
(1,3,5,7)2,4 **

(4,12,5,13)1
(4,12,5,13)8
(4,5,12,13)1,8 **

7
13

(3,7),4
(5,7)2
(5,13)8
(12,13)1

15 (7,15)8
(13,15)2

(5,7,13,15)2
(5,13,7,15)8
(5,7,13,15)2,8 **

After using the prime implicant chart as shown

in Table 5, the simplified expression for this

Boolean function is a'c'+a'd+bc'+bd.

<Table 5> Prime Implicants Chart

0 1 3 4 5 7 12 13 15
(0,1,4,5)1,4 X X X X
(1,3,5,7)2,4 X X X X
(4,5,12,13)1,8 X X X X
(5,7,13,15)2,8 X X X X

For the second part of the method, the process is

slightly more complex for this Boolean function.

The complete operations needed to derive S-HDC

minterms are shown in Table 6.

Here, the combinatorial operations can be

categorized into two cases:

- 32 -

a) skip the S-HDC calculation, and

b) perform the S-HDC calculation.

First, the skipping rule is as follows: In Interation

II, if the implicant members are members of higher

iteration implicant group, then S-HDC cannot be

derived. The calculation procedure needs to be

skipped, and we need to proceed to a next pair of

implicant groups.

As shown in this example, (0,1)1 and (0,4)4 needs

to be compared for the combinatoral comparion

operations. Minterm "0" is the matching minterm

since minterm "0" exist in both implicant groups.

Note that the combinatorial comparion operation

involves three individual minterms, and they need to

be examined collectively. For the first operation,

the three numbers are "0", "1" and "4". If an

implicant group in the next higher iteration contains

all of these minterms (0, 1, and 4), then comparison

of the minterms and the S-HDC calculation

operation can be skipped.

The second rule specifies a valid condition where

the S-HDC calculation can be performed. Succinctly

stated, if the implicant minterms are not member of

a single implicant group in next higher iteration,

then we perform additional S-HDC comparison

procedures.

The additionally required procedure is the

following: If two pairs are involved, we can take

each pair of minterms and locate the matching

implicant group in Iteration 2. Then, the unmatched

pairs of minterms must be examined to see if they

are member minterms of higher iteration implicant

groups. If both pairs of unmatched minterms are

members of a higher iteration implicant group, then

the condition is valid for calculating a S-HDC

minterm. If it is a valid condition, then we can

perform a S-HDC minterm calculation based on

combinatorial minterm operations.

<Table 6> The Derivation of Candidate S-HDC for

∑(0,1,3,4,5,7,12,13,15)

Index

#

Implicant

Pairs

S-HDC Minterm

Calculation

1
(0,1)1

(0,4)4
Skip

2
(0,1)1

(1,3)2

Perform

2

3
(0,1)1

(1,5)4
Skip

4
(0,4)4

(4,5)1
Skip

5
(0,4)4

(4,12)8

Perform

8

6
(1,3)2

(3,7)4
Skip

7
(1,5)4

(5,7)2
Skip

8
(1,5)4

(5,13)8
Skip

9
(4,5)1

(5,7)2
Skip

10
(4,12)8

(12,13)1
Skip

11
(3,7)4

(5,7)2
Skip

12
(5,7)2

(5,13)8
Skip

13
(5,13)8

(12,13)1
Skip

14
(3,7)4

(7,15)8

Perform

11

15
(5,7)2

(7,15)8
Skip

13
(5,13)8

(13,15)2
Skip

14
(12,13)1

(13,15)2

Perform

14

15
(7,15)8

(13,15)2
Skip

S-HDC Minterms 2,8,11,14

For example, in Table 6, the first comparison

implicant pairs are (0,1)1 and (0,4) 4. However, "0",

- 33 -

"1", and "4" exists in the implicant group (0,1,4,5).

Since all of these hypothetical minterms are found

in the higher implicant group, the S-HDC

calculation can be skipped for this particular set of

minterms. Now, for index #2, (0,1)1 and (1,3)2 are

being compared. Notice that (0,1) is member

minterms of implicant group (0,1,4,5). At the same

time, the remaining implicant group (4,5) exists in

the implicant group (4,5,12,13). In addition, (1,3) is

a member minterms of the implicant (1,3,5,7) and

the remaining minterms (5,7) is in implicant group

(5,7,13,15). The resulting calculation can be

performed since this is a valid case. After both

addition and subtraction attempts, we see that a

successful equal value can be obtained since 0+2=2

and 3-1=2. Since the result of these operations are

equal, the S-HDC minterm for index #2 is "2". The

result of the entire operations is shown on this

table.

7. The Effects of S-HDC Minterm

After obtaining every S-HDC minterm, we can

simply run the Quasi Quine-McCluskey method

again to see the effects using the S-HDC minterm.

Since "2", "8", "11", and "14" are S-HDC minterms,

any of these minterm values can be added to the

original Boolean function to see the effects. For

instance, after adding S-HDC minterm "2", the new

Boolean function would be ∑(0,1,2,3,4,5,7,12,13,15).

After running the first part of the Quasi

Quine-McCluskey method, a minimized expression

for this problem with the S-HDC minterm "2" is

a’b’+bc'+bd. After adding S-HDC minterm "2" to

the Boolean function, the minimized expression

result is more concise than the minimized

expression from the previous Boolean function ∑

(0,1,3,4,5,7,12,13,15). In effect, we are comparing the

minimized result without any S-HDC minterm with

the minimized results with a S-HDC minterm.

Here, a new minimized Boolean expression resulted

in 3 product terms instead of 4 product terms. The

remaining S-HDC minterms "8", "11", and "14" will

produce similar effects if they are individually added

to the original Boolean function.

The illustration so far was limited to comparing 4

member minterms. However, the combinatorial

comparison operation is basically the same for even

higher iterations. Forming a group of 4 adjacent

minterms is a prerequisite for forming a group 8

adjacent minterms. In other words, an implicant

group of 8 requires two adjacent implicant groups

that have 4 member minterms. If there are 7

adjacent minterms, then it can be viewed as 3

adjacent minterms, and an implicant group of 4.

Since the method describe in this paper derives a

S-HDC minterm based on recognizing 3 adjacent

minterms, it has a minimizing effect on a group of

7 adjacent minterms as well. Therefore, the skip

and valid procedures which was described earlier

works for cases beyond Iteration II.

8. Conclusion and Future Works

By extending the Quine-McCluskey method, the

proposed Quasi Quine-McCluskey method

systematically identified every possible instances of

S-HDC minterms. This paper demonstrated that the

Quasi Quine-McCluskey method is effective in

deriving a combinational set of minterms that can

group together with existing minterms. The

computer based implementation should be straight

forward since the method described in this paper is

systematic.

The suitability of S-HDC minterms are left up to

a designer. Since they are purely hypothetical

information from designer's standpoint, the designer

has to make a decision whether these can be

applied for a particular application. It should be

stressed that the basic premise of using S-HDC

minterms is that in certain situations changing or

- 34 -

sacrificing logical condition is acceptable in order to

obtain a minimized Boolean expression.

For future works, a wider range of S-HDC

minterm patterns involving larger variable problems

can be considered. For example, instead of only

considering "single" don't-care conditions, "dual"

don't-care conditions can be considered as well. In

such a case, a pair of don't-care minterms or a

combination of both pair and S-HDC minterms

would produce greater minimizing effects in general.

Also, we could also consider cases, where

minimization can be achieved by eliminating

existing Boolean function minterms instead of

deriving a S-HDC minterm. Obviously, the suggested

method only solves a small part of imaginable

don't-care minterms since there are many possible

variations regarding hypothetical don't care

minterms. Therefore, different types of hypothetical

don't-care minterms and the effects of their

patterns should be more throughly investigated in

the future.

References

[1] C. H. Roth, Jr., Fundamentals of Logic Design,

6th ed., Thomson Engineering, 2009.

[2] D. Brand, R.A. Bergamaschi, and L. Stok, "Don't-

cares in synthesis: Theoretical pitfalls and practical

solutions," IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, vol.

17, no. 4, pp. 285-304, April, 1998.

[3] S. C. Chang and M. Marek-Sadowska, "An

efficient algorithm for local don't-care sets

calculation," in Proc. of Design Automation

Conf., 1995, pp. 663-667.

[4] H. Chou, K. Chang, and S. Kuo, "Accurately

handle don't-care conditions in high-level

designs and application for reducing initialized

registers," IEEE Transactions on CAD of

Integrated Circuits and Systems vol. 29, no. 4,

pp. 646-651, 2010.

[5] A. Mishchenko, R. Brayton, J. Jiang, and S.

Jang. "Scalable don't-care-based logic optimization

and resynthesis," ACM Trans. Reconfigurable

Tech. Syst. vol 4., no. 34, Dec. 2011.

[6] S. Safarpour, A.G. Veneris, and R. Drechsler,

"Integrating observability don't-cares in all-

solution SAT solvers," in Proc. ISCAS, 2006.

[7] M. Nosrati, R. Karimi, and R. Aziztabar,

"Minimization of boolean functions which include

don't-care statements, using graph data

structure," in Proc. of WiMoA 2011/ICCSEA

Dubai, UAE, 2012, pp. 212-220.

[8] M. Damiani and G. De Micheli, "Observability

don't-care sets and Boolean relations," in Proc.

Int. Conf. Comput.-Aided Des., 1990, pp. 502-505.

[9] M. Karnaugh, "A map method for synthesis of

combinational logic circuits," Transactions of the

AIEE, Communications and Electronics, vol. 72,

pp. 593-599, 1953.

[10] E. J. McCluskey, "Minimization of Boolean

functions," Bell System Tech. Journal, vol. 35,

no. 5, pp. 1417-1444, 1956.

[11] P. K. Lala, Principles of Modern Digital

Design, John Wiley & Sons, Inc., Hoboken, NJ,

USA, 2006.

[12] R. Katz and G. Borriello, Contemporary Logic

Design, 2nd Ed., Pearson/Prentice Hall. 2005.

[13] P. W. C. Prasad, A. Beg, and A. K. Singh,

"Effect of Quine-McCluskey simplification on

Boolean space complexity," IEEE Proceeding

2009 Conference on Innovative Technologies in

Intelligent Systems and Industrial Applications,

pp. 165-170, Monash University, July, 2009.

[14] R. Mohan Ranga Rao, "An Innovative procedure

to minimize Boolean function," International

Journal of Advanced Engineering Sciences and

Technologies(IJAEST), vol. 3, no. 1, pp. 12-14,

2011.

[15] M. Petrík. "Quine-McCluskey method for many-

valued logical functions," Soft Computing-A

Fusion of Foundations, Methodologies and

Applications, vol. 12, no. 4, pp. 393-402, April,

2007.

- 35 -

김 은 기 (Eungi Kim)

∙정회원

∙Indiana Univ. of Pennsylvania

(BS) (Computer Science)

∙Illinois State University (MS)

(Applied Computer Science)

∙University of North Texas (Ph.D Candidate in

Information Science)

∙남서울 대학교 정보통신학과 외국인교수

∙관심분야: Information Retrieval, Digital Systems

논 문 접 수 일
1차수정완료일
2차수정완료일
게 재 확 정 일

:
:
:

2012년 11월 13일

2013년 01월 02일

2013년 01월 24일

2013년 01월 25일

