Current Research Trends in Water Treatment Membranes Based on Nano Materials and Nano Technologies

나노 기술을 이용한 수처리 분리막 소재의 최근 연구동향

  • Lee, Hee Dae (WCU Department of Energy Engineering Hanyang University) ;
  • Cho, Young Hoon (WCU Department of Energy Engineering Hanyang University) ;
  • Park, Ho Bum (WCU Department of Energy Engineering Hanyang University)
  • 이희대 (한양대학교 에너지공학과) ;
  • 조영훈 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2013.04.08
  • Accepted : 2013.04.18
  • Published : 2013.04.30

Abstract

Nano materials having large surface area, uniform dimensions or pores can be utilized in various membrane applications. Recently, many studies have been focused on the application of nano materials and nano technologies in membrane applications by the help of the discovery and development of nano technologies. in terms of mass transport channels or functional modification. However, there have been several technological limitations for commercialization. Nano materials and nano technologies can improve 1) permeability, selectivity, 2) mechanical, chemical, thermal stability or fouling tolerance of conventional membranes and even 3) introduce new functionalities such as specific affinity and reactivity.

나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달 통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그러나 나노 소재 및 나노 기술을 기반으로 한 분리막의 상용화를 위한 여러 가지 기술적인 한계가 존재하며 최근 나노 소재 및 제조 기술이 발전하고 다양해짐에 따라 분리막에 나노 소재 및 기술을 활용하려는 연구가 많이 진행되고 있다. 나노 소재 및 기술을 활용하는 경우 기존 분리막의 투과도 및 선택도를 크게 높일 수 있으며 열적, 화학적, 기계적 안정성 및 내오염성을 향상시키거나 기능성 소재를 활용하여 분리막에 새로운 기능을 부여할 수 있다.

Keywords

References

  1. M. A. Shannon et al., "Science and technology for water purification in the coming decades", Nature, 452, 301 (2008). https://doi.org/10.1038/nature06599
  2. B. J. Choi et al., "Membrane Market for Water Treatment", KIC News, 14, 6 (2011) .
  3. G. M. Geise et al., "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130 (2011). https://doi.org/10.1016/j.memsci.2010.11.054
  4. R. W. Baker, "Membrane Technology and Applications", 2nd Ed., John Wiley & Sons (2004).
  5. F. A. Pacheco et al., "Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques", J. Membr. Sci., 358, 51 (2010). https://doi.org/10.1016/j.memsci.2010.04.032
  6. K. B. Yoon, "Zeolite", Physics & high technology, 13 (2004).
  7. B. H. Jeong et al., "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
  8. M. L. Lind et al., "Tailoring the Structure of Thin Film Nanocomposite Membrane to Achieve Seawater RO membrane Performance", Environ. Sci. Technol, 44, 8230 (2010). https://doi.org/10.1021/es101569p
  9. Morinobu Endo, "Progress and perspectives in the carbon nanotube world", www.azonano.com, June (2010).
  10. G. Hummer et al., "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414, 188 (2001). https://doi.org/10.1038/35102535
  11. M. Majumder et al., "Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes", Nature, 438, 44 (2005). https://doi.org/10.1038/438044a
  12. J. K. Holt et al., "Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes", Science, 312, 1034 (2006). https://doi.org/10.1126/science.1126298
  13. B. Corry, "Designing Carbon Nanotube Membranes for Efficient Water Desalination", J. Phys. Chem. B, 112, 1427 (2008). https://doi.org/10.1021/jp709845u
  14. A. Noy et al., "Nanofluidics in carbon nanotubes", Nanotoday, 2, 6 (2007).
  15. K. Murata et al., "Structural determinants of water permeation through aquaporin-1", Nature, 407, 599 (2000). https://doi.org/10.1038/35036519
  16. Y. Kaufman et al., "Supported lipid bilayer membranes for water purification by reverse osmosis", Langmuir, 26, 7388 (2010). https://doi.org/10.1021/la904411b
  17. M. Kumar et al., "Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z", Proc. Natl. Acad. Sci., 104, 20719 (2007). https://doi.org/10.1073/pnas.0708762104
  18. Teruaki Hayakawa., AIST Today, 3, 11 (2003).
  19. Y. S. Jung et al., "Well-ordered thin-film nanopore arrays formed using a block-copolymer template" Small, 5, 1654 (2009). https://doi.org/10.1002/smll.200900053
  20. V. Castelletto et al., "Morphologies of block copolymer melts", Current Opinion in Solid State and Materials Science, 8, 426 (2004). https://doi.org/10.1016/j.cossms.2005.06.001
  21. A. Greiner et al., "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers", Angewandte Chemie, 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  22. M. T. M. Pendergast et al., "a review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  23. D. Bahnemann, "Photocatalytic water treatment: solar energy applications", Solar Energy, 77, 445 (2004). https://doi.org/10.1016/j.solener.2004.03.031
  24. A. F. Ismail et al., "Transport and separation properties of carbon nanotube-mixed matrix membrane", Separation and Purification Technology, 70, 12 (2009). https://doi.org/10.1016/j.seppur.2009.09.002
  25. http://www.rsc.org/chemistryworld/Issues, November (2003).
  26. T. H kim, "Current R&D Trend of Nanofiber Membranes", Membrane Journal, 22, 6 (2012).