Gas Separation Study of PEBAX 3533 and PEG Blended Membranes

PEBAX 3533과 PEG의 혼합막에 대한 기체투과 연구

  • Kim, Kwang Bae (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cho, Eun Hye (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong Ihl (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Lee, Hyung Keun (Korea Institute of Energy Research) ;
  • Rhim, Ji Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 김광배 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 조은혜 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 이형근 (한국에너지기술연구원) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과)
  • Received : 2013.04.12
  • Accepted : 2013.04.22
  • Published : 2013.04.30

Abstract

In order to increase the permeabilities of $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$, Poly (ether block amides) (PEBAX) 3533 and its blended membranes with Poly (ethylene glycol) (PEG) of molecular weight 400 were prepared. The contents of PEG400 were 20%, 40%, and 50% and this membranes were characterized in terms of permeability for $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$ gases and also diffusivity and solubility as well by using the time-lag gas separation apparatus. As expected, the permeabilities incerased as the contents of PEG400 increased. For the ideal selectivity, there is no big difference in values of between PEBAX 3533 and PEBAX/PEG400 membranes. The increase of permeabilities is due to the increases of solubilities of gases in question and this will be explained in more detail.

본 연구에서는 Poly (ether block amides)(PEBAX) 3533을 이용하여 $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$에 대하여 투과도를 측정하였다. 투과선택도를 향상시키기 위하여 분자량 400의 Poly (ethylene glycol) (PEG)를 PEBAX 대비 20%, 40%, 50% 첨가하여 막을 제조한 후 $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$ 순으로 투과도 및 순수 기체에 대하여 확산도 및 용해도를 각각의 막에 대하여 Time-lag법을 이용하여 측정하였다. 예상한 바와 같이 PEG 함량의 증가에 따라 순수 기체에 대한 투과도는 증가하였으며, 이상선택도의 경우 PEBAX 3533이 지니는 값과 큰 차이를 나타내지 않았으며 PEG 함량 증가에 따라 투과도의 증가는 각 기체의 PEG에 대한 용해도 증가때문인 것으로 밝혀졌으며 이에 대해서 본문에서 자세히 설명하고자 한다.

Keywords

References

  1. H. Strathmann, "Membranes and membrane processes in biotechnology", Trend in Biotechnol., 3, 112 (1985). https://doi.org/10.1016/0167-7799(85)90125-8
  2. H. K. Lonsdale, "The growth of membrane technology", J. Membr. Sci., 10, 81 (1982). https://doi.org/10.1016/S0376-7388(00)81408-8
  3. B. K. Park, S. H. Kong, S. Y. Lee, Y. J. Kim, and S. Y. Nam, "Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC) preparation and properties of sulfonated SEBS (SSEBS)-clay hydrid membranes", Membrane Journal, 15, 165 (2005).
  4. H. I. Cho, M. Y. Seo, D. H. Kim, I. C. Park, S.Y. Nam, and J. W. Rhim "Pervaporation separation of water/ethanol mixture using PVA/PSSAMA ion exchange membranes", Membrane Journal, 16, 235 (2006).
  5. J. W. Park, D. H. Shin, and Y. T. Lee, "The concentration of magnolia aroma model solution using pervaporation and preparation of PVDF/PDMS composite membranes", Membrane Journal, 17, 14 (2007).
  6. J. H. Kim, S. K. Hong, and S. J. Park, "Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane", Korean Chem. Eng. Res., 45, 6, 619 (2007).
  7. W. J. Schell, "Commercial applications for gas permeation membrane systems", J. Membr. Sci., 22, 217 (1985). https://doi.org/10.1016/S0376-7388(00)81281-8
  8. Y. G. Park and Y. M. Lee, "Reviews on Gas Separation Membrane Process", Membrane Journal, 6, 59 (1996).
  9. S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Aminabhavi, "evelopment of Crosslinked Poly (etherblock- amide) Membrane for $CO_{2}$/$CH_{4}$ Separation," Colloids and Surfaces A, 297, 267-274 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  10. V. Bondar, B. D. Freeman, and I. Pinnau, "as Transport Properties of Poly(ether-b-amide) Segmented Block Copolymers", J. Polym. Sci. (Part B: Polym. Phys.), 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  11. A. Car, C. Stropnik, W. Yave, and K. Peinemann, "Pebax/PolyethyleneGlycol Blend Thin Film Composite Membranes for $CO_{2}$ Separation: Performance with Mixed Gases", Separation and Purification Technol., 62, 110-117 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  12. H. Kim, C. Lim, and S. Hong, "As Permeation Properties of Organic-Inorganic Hybrid Membranes Prepared from Hydroxyl-Terminated Polyether and 3-Isocyanatopropyltriethoxysilane", J. Sol-Gel Sci. Technol., 36, 13-221 (2005).
  13. H. Kim, and S. Hong, "as Permeabilities of Polysulfones Substituted with Bromo and Trimethylsilyl Groups", Korean J. Chem. Eng., 17, 122-127 (2000). https://doi.org/10.1007/BF02789265
  14. B. S. Lee, T. Y. Kim, D. H. Kim, B. S. Lee, S. W. Yoon, H. S. Im, and J. W. Rhim "Gas Permeation Properties of Brominated Polysulfone Membranes", Membrane Journal, 19, 150-156 (2009).
  15. J. H. Kim, S. Y. Ha, Y. M. Lee., "Gas permeation of poly (amide-6-b-ethylene oxide) copolymer", Membrane Journal, 190, 179-193 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
  16. K. V. Yuen and L. S. Katafygiotis., "An efficient simulation method for reliability analysis of linear dynamical systems using simple additive rules of probability", Probabilistic Engineering Mechanics, 20, 109-114 (2005). https://doi.org/10.1016/j.probengmech.2004.07.003