Mg-Al Layered Double Hydroxide/Ethylene Vinyl Acetate 나노복합막의 기계적 특성과 기체투과 특성에 관한 연구

황 지 영·이 상 협*·이 종 석*·홍 세 령**·이 현 경[†]

상명대학교 공업화학과, *한국과학기술원 물환경센터, **상명대학교 교양대학 (2013년 4월 2일 접수, 2013년 4월 22일 수정, 2013년 4월 23일 채택)

Mechanical and Oxygen Permeation Properties of

Layered Double Hydroxide/Ethylene Vinyl Acetate Nanocomposite Membranes

Ji-Young Hwang, Sang-Hyup Lee*, Jong-Suk Lee*, Se-Ryung Hong**, and Hyun-Kyung Lee[†]

Department of Industrial Chemistry, Sangmyung University, Seoul 110-743, Korea

*Water Environment Center, Korea Institute of Science and Technology, Seoul 136-791, Korea

**College of general studies, Sangmyung University, Seoul 110-743, Korea

(Received April 2, 2013, Revised April 22, 2013, Accepted April 23, 2013)

요 약: EVA의 기체 분리 성질에 미치는 LDH의 영향을 알아보았다. Mg-Al LDH/EVA 나노복합막은 유기적으로 수정된 DS-LDH를 이용하여 용액 삽입법으로 제조되었다. DS-LDH는 LDH 층간에 DS 음이온을 삽입하여 제조하였다. 나노복합막 의 구조는 XRD, FT-IR, SEM으로 알아보았다. DS-LDH가 EVA 내에 무질서하게 분산되었음을 XRD로부터 확인하였다. LDH가 3 wt% 첨가된 나노복합막에서 인장강도와 파단신율 모두 최댓값을 나타내었다. 열적 안정도 역시 EVA에 LDH가 첨가되면서 향상되었다. 1, 3, 5 wt%의 LDH를 함유한 LDH/EVA 나노복합막의 기체투과도는 O₂와 CO₂에 대하여 측정하 였다. 3 wt% LDH를 함유한 경우 나노복합막의 O₂에 대한 투과도가 EVA막에서보다 53% 감소하였다. 하지만 CO₂ 투과도는 나노복합막의 기체 차단 특성에도 불구하고 LDH 내의 OH기와 CO₂ 간의 높은 친화력으로 인하여 기체투과도는 증가하였다.

Abstract: The effect of layered double hydroxides (LDH) on the gas separation properties of ethylene vinyl acetate copolymer was investigated. Mg-Al LDH/EVA nanocomposite membranes were prepared from solution intercalation using organically modified LDH (DS-LDH). Dodecyl sulfate (DS)-LDH was obtained by the intercalation of DS anion in the interlayer. The nanocomposite structure has been elucidated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). XRD pattern clearly shows that the DS-LDH layers are disorderly well dispersed in the EVA matrix. The maximum tensile strength and elongation of the LDH/EVA nanocomposite membrane were found with the LDH content 3 wt%. The thermal properties of nanocomposite membranes with LDH contents of 1, 3, 5 wt% was studied for O_2 and CO_2 single gases. The presence of 3 wt% LDH decreased O_2 permeability by up to 53% compared to the EVA membrane. In spite of barrier property of nanocomposite membrane, however, the gas permeability for CO_2 was increased due to its strong affinity with the residual OH groups on the LDH.

Keywords: EVA copolymer, LDH, Nanocomposite membranes, Permeability, Selectivity

1. 서 론

고분자 막은 다른 막에 비해 경제적이고 산업적 응용

도가 높아서 다양한 분야에 사용되고 있다[1,2]. 하지만 고분자 막의 많은 장점에도 불구하고 기체의 투과도가 증가하면 선택도는 감소하는 상대적 모순 현상이 일어 나기 쉽고 높은 온도에서 불안정한 단점이 있다[2-4].

[†]교신저자(e-mail: hklee@smu.ac.kr)

고분자/무기물을 이용한 복합막 중에서도 특히 고분자 에 층상 결정물질를 첨가하여 제조한 나노복합막에 대 한 관심이 높아지고 있다. 고분자에 나노 크기의 무기 물을 첨가하여 막을 제조하면 용해도와 분자체 효과가 동시에 일어나기 때문에 고분자 막의 투과도와 선택도 사이의 양립 현상을 방지할 수 있고 무기물의 입자가 작기 때문에 막의 혼탁도에 영향을 미치지 않는다[4-7].

관련 연구로는 Masiud. F팀의 연구로 polypropylene-EPDM/층상 결정 나노복합막을 이용하여 기체 차단 특 성을 관찰한 결과 층상 결정의 함량이 증가할수록 산소 와 이산화탄소에 대한 투과도가 감소하는 양상을 보였다 [8]. 또한 Zhong. Y팀의 연구로 polyethylene 나노복합막 에 대한 기계적 특성과 산소 투과 특성을 연구한 결과 결 정이 첨가되었을 때 기계적 성질이 향상되면서 기체 차단 특성이 강화되는 양상을 나타내는 것을 확인하였다[9].

고분자 막에 많이 사용되는 올레핀계 고분자는 비극 성, 소수성 성질을 가지고 있지만 결정은 극성이고 친수성 성질을 가지고 있다. 따라서 고분자와 결정의 계면 사 이의 인력이 약해져 상용화제를 이용하여 두 물질 계면 의 인력을 강화시켜 주어야 한다. 그러나 ethylene vinyl acetate 공중합체는 에스터기가 극성을 띠어 상용화제 가 필요하지 않아 공정이 비교적 간단하다[9,10]. 이러 한 이유로 최근 EVA/층상 결정 나노복합막에 대한 연 구가 관심을 받고 있다. EVA는 기계적 안정성이 좋고 유연성이 있어 케이블이나 도료 등 다양한 산업분야에 이용되고 있다.

한편 또 다른 층상 나노물질로 알려진 layered double hydroxide는 층상 형태를 갖는 하이드로탈사이트로 많 이 알려져 있고 [M²⁺(1-x)M³⁺x(OH)₂]^{X+}A^{m-}xm·nH₂O의 구 조를 갖는다. 여기서 M²⁺와 M³⁺는 각각 금속 2가 양이 온과 3가 양이온을 뜻한다. Fig. 1에서 나타낸 것과 같 이 이 금속 이온은 팔각형의 모양을 갖고 말단에 -OH 기가 붙어있는 형태의 양이온으로 하전된 시트를 형성 하는데 전하밀도가 높기 때문에 균형을 맞추기 위해 물 과 음이온이 삽입되어 층을 형성한다. 삽입된 음이온은 교환이 가능하여 촉매, 열 안정제, 약물, 유무기 막 등 다양한 산업 분야에 적용되어 쓰이고 있다[11-15]. 고분 자/층상무기물 나노복합막체의 제조방법에는 크게 4가 지가 있는데 중합법, 삽입법, 재적층법 그리고 공침법 등이다[16]. 현재까지 진행된 연구에서 고분자/LDH를 합성하는 방법과, 기계적 특성을 연구하는 데 주로 집

Fig. 1. Schematic representation of layered double hydroxide.

Fig. 2. Chemical structure of EVA copolymer.

중되어 있으며 막으로써의 응용성에 대해서는 아직까 지 많은 연구가 이루어지지 않았다.

따라서 이번 연구에서 고분자로 산업적 응용도가 높 은 EVA를 선택하고 LDH로는 경제성과 안정성이 우수 한 Mg-Al LDH를 충진제로 한 EVA/Mg-Al LDH 나노 복합막을 제조하였다. 기본 LDH에 고분자를 곧바로 삽 입하는 것은 LDH의 좁은 층간 간격과 극성 차이로 인 하여 어려운 것으로 알려져 있다. 따라서 LDH를 개질 하여 고분자를 삽입시키는 방법이 이용되었다. LDH에 계면활성제인 DS (dodecyl sulfate)를 삽입하여 층간의 간격을 넓히고 LDH를 유기화시켜 고분자의 삽입이 용 이하도록 하였다. 또한 EVA 내 LDH의 함량 변화에 따른 EVA/LDH 나노복합막의 물리화학적 특성과 기계 적 물성 변화를 분석하였으며 산소와 이산화탄소의 기 체투과 특성을 알아보았다.

2. 실험재료 및 방법

2.1. 시약 및 실험가스

Mg-Al LDH를 제조하기 위해 사용한 Mg(NO₃)₂ · 6H₂O와 Al(NO₃)₂ · 9H₂O, NaOH, Na₂CO₃는 대정화 학제(국산)를 사용하였고 이중층 수산화물 층간에 DS를 삽입하기 위해 사용된 SDS (soduim dodecyl sulfate)는 Wako pure chemical제(일본)를 사용하였다. 용매로 사 용한 xylene은 Aldrich제(미국)를 용하였고 toluene은 대정화학제(국산)를 용하였다. 고분자로 사용된 EVA 공중합체(vinyl acetate 함량 25 wt%)와 가교제인 dicumyl peroxide(DCP) 또한 Aldrich제(미국)를 용하였 다. 실험에 사용된 증류수는 초순수장치를 통과한 정제 수를 사용하였다.

기체투과측정에 사용한 순수기체 O₂와 CO₂는 순도 99.995%의 것을 사용하였다.

2.2. Mg-AI LDH 합성

Mg-Al LDH를 제조하기 위하여 Mg(NO₃)₂ · 6H₂O와 Al(NO₃)₂ · 9H₂O를 3:1의 몰비로 100 mL 증류수에 용 해시킨다. 제조된 용액을 NaOH와 Na₂CO₃를 3.5:1의 몰비로 제조한 100 mL 수용액에 위에 제조한 수용액을 천천히 가하면서 pH가 8~9를 유지하도록 1M의 NaOH 로 조절한다. 이 반응으로 얻어진 침전물을 70~75℃에 서 12시간 동안 교반하고 결과물인 흰색의 침전물을 증 류수로 세척하여 여과한 후 70℃의 vaccum oven에서 건조시켜 Mg-Al LDH를 얻었다[11]. LDH를 유기화하기 위해 LDH를 500℃에서 6시간 동안 소성하고 100 mL 증류수에 동량의 SDS (2 g)를 첨가하여 70℃에서 12시 간 교반 후 6시간 동안 환류시켰다. 얻어진 침전물을 건조하여 유기 친화적인 DS-LDH를 제조하였다.

2.3. EVA/Mg-AI LDH 나노복합막 제조

용액 삽입법을 이용하여 EVA/Mg-Al LDH 나노복합 막을 제조하였다. DS-LDH의 함량은 고분자 기준으로 1, 3, 5 wt%로 달리하여 제조하였다. 30 mL O-xylene에 DS-LDH를 넣고 100℃에서 6시간 동안 교반한다. DSLDH 가 완전히 분산되면 100 mL toluene에 15 g의 EVA를 용해시킨 용액을 넣고 100℃에서 6시간 동안 격렬하게 교반한다. 마지막으로 혼합 용액에 가교제인 DCP를 고 분자 기준으로 10 wt%를 첨가시킨 후 감압 하에서 용매 를 제거한다. 졸 상태의 용액을 유리판에서 casting 하 여 50℃에서 건조시켜 EVA/Mg-Al LDH 나노복합막을 얻었다.

2.4. 기체투과 측정

기체 투과막의 면적은 14.7 cm²이고 지름은 5 cm이다. 산소투과 실험은 7~9 bar 30℃에서, 이산화탄소 투과 실험은 7 bar 30℃ 조건에서 진행하였고 EVA/LDH 나 노복합막의 두께는 약 180~250 μm였다. 이상분리인자 α는 다음 식을 이용해서 구하였다.

$$\alpha = \frac{P_2}{P_1} \tag{1}$$

P1과 P2는 각각 기체성분 1과 2의 투과도이다.

2.5. 분석 및 측정

Fourier transform infrared (FT-IR)은 JASCO사(일본) 의 FT/IR-460 Plus를 사용하였다. LDH의 층간 간격을 확인하기 위해 측정한 X-ray diffraction (XRD)는 Bruker (독일)사에서 제조되고 Cu K α 로 측정하는 D5005(40 kV, 45 mA)를 사용하였으며 λ=1.5406, 2 θ = 2~70 ° 에서 측정하였다. Scanning electron microscopy (SEM) 은 JEOL사(일본)의 JSM 7500F를 이용하여 가속전압 10 kv로 관찰하였다. Universal testing machine (UTM) 은 Intron사(미국)의 Instron3366를 사용하여 기계적 특 성을 관찰하였고 실험은 100 mm/min으로 진행하였다. Thermogravimetric analyzer (TGA)는 TA Instrument사 의 Q5002950을 이용하여 온도 범위 30~600℃, 승온 속도 20℃/min으로 관찰하였다. 가스투과실험은 디.에 스.켐(주)(국산)의 GPA2001을 사용하였다.

3. 결과 및 고찰

3.1. EVA/Mg-AI LDH 나노복합막의 특성

3.1.1. FT-IR 분석

Fig. 3에서 FT-IR 결과를 나타내었다. 먼저 LDH와 DS-LDH의 3,400~3,500 cm⁻¹ 범위에서 OH의 신축진동 에 의한 피크가 나타났다. 1,600~1,650 cm⁻¹ 범위에서 층간에 존재하는 물에 의한 피크를 확인하였고, 1,350~ 1,380 cm⁻¹에서는 탄산이온의 신축진동에 의한 피크를 확인하였다. DS 분자의 C-H 결합에 의한 신축진동은 2,850~2,965 cm⁻¹에서 나타났다. 또한 1,370~1,420 cm⁻¹ 에서 -CH₂와 -CH₃ 사슬의 굽힘진동에 의한 피크가 관 찰되었다. DS-LDH의 sulfate 이온에 의한 신축진동은 1,180~1,200 cm⁻¹에서 확인되었다. 967 cm⁻¹와 1,051 cm⁻¹ 에서의 DS-LDH IR 스펙트럼은 충간에 있는 sulfate 음 이온의 굽힘진동에서 기인한 피크가 나타났다. 800 cm⁻¹

Fig. 3. FT-IR spectra of LDH, calcined LDH, DS-LDH, EVA and EVA/LDH 3 wt% nanocomposites.

나타났다. 소성한 LDH의 IR 스펙트럼은 관찰되지 않았다. EVA에서는 에스터 그룹에서 기인한 C=O 결합의 신축진동이 1,731 cm⁻¹에서 나타났다. EVA/LDH 3 wt% 나노복합막에서는 500~800 cm⁻¹에서 격자진동에 의한 피크가 나타나고 있는데 이것은 EVA가 LDH의 충간에 삽입되었음을 의미한다.

3.2. XRD 분석

LDH의 층간에 삽입된 DS를 확인하고 나노복합막 내에 LDH가 분산되었는지를 확인하기 위해 X-ray 분 석을 진행하였고 Bragg식인 $d = n \lambda / 2 \sin \theta$ 를 이용하여 계산하였다. 2 *θ* =10~70 ° 범위에서 LDH의 XRD 경향 을 분석한 결과를 Fig. 4에 나타내었는데 기본 회절 peak 인 003 peak가 11.450 °에서 나타났고 LDH 충간 거리 는 0.77 nm인 것으로 확인되었다. DS-LDH와 EVA/LDH 3 wt% 나노복합막의 XRD 경향은 Fig. 5에서 확인할 수 있다. 먼저 DS-LDH의 기본 회절 피크는 약 2.80 ° 에서 보여지는데 층간 거리는 약 2.98 nm로 DS 이온이 LDH 층간에 삽입되면서 층간 거리가 증가한 것을 알 수 있다. EVA/LDH 나노복합막에서는 회절 피크가 관 찰되지 않았는데 LDH 층간에 고분자가 삽입되면서 박 리되었음을 알 수 있다. LDH가 박리되는 것은 고분자 내에 삽입되는 LDH의 양이 고분자에 삽입될 수 있는 양보다 더 많고, LDH 층간에 DS가 삽입되면서 층간 간격이 증가하였기 때문이다[17].

3.3. UTM 측정

LDH 함량에 따른 EVA/LDH 나노복합막의 기계적

Fig. 4. XRD pattern of LDH.

Fig. 5. XRD pattern of EVA/LDH 3 wt% nanocomposite membrane and DS-LDH.

특성을 알아보기 위해 인장강도와 파단신율을 측정한 결과를 Fig. 6에 나타내었다. 측정 결과 LDH의 함량이 증가할수록 인장강도와 파단신율 모두 증가한 것을 확 인하였다. EVA 단일막의 인장강도가 20.13 kPa이었고 3 wt% LDH가 첨가된 나노복합막의 인장강도는 27.04 kPa로 약 34% 정도 증가하였다. T. Kuila팀의 EVA와 Mg-Al LDH의 합성과 특성에 관해 진행한 연구에서는 LDH의 함량이 1 wt%일 때 인장강도가 가장 좋은 것 으로 나타났다. 인장강도가 증가하는 것은 LDH의 하이 드록실 그룹과 EVA의 극성 아세테이트 그룹의 강한 상 호작용 때문이다. 그러나 EVA/LDH 5 wt% 나노복합막 의 인장강도와 파단신율은 급격히 감소했는데 이것은 LDH 첨가량이 많아지면서 nano layer가 응집했기 때문 이다[18].

3.4. TGA 분석

Fig. 7에 EVA 단일막과 EVA/LDH 3 wt% 나노복합 막의 TGA 비교 곡선을 나타내었다. EVA 단일막과 EVA/ LDH 3 wt% 나노복합막의 열분해는 모두 2단계에 걸쳐 나타났다. 첫 번째 단계에서는 아세트산이, 두 번째 단

Fig. 6. TS and EB of EVA/LDH nanocomposite membranes.

Fig. 7. TGA curves of (a) pure EVA and (b) EVA/LDH 3 wt% nanocomposite membranes.

계에서는 고분자의 주요사슬이 분해된다. 그림 Fig. 7에 보여지는 것과 같이 EVA/LDH 나노복합막에서의 최초 의 무게 손실이 더 빨리 나타나는데, 그 이유는 DS 분 자의 alkyl chain 분해가 먼저 진행되기 때문이다. 또한 EVA 단일막의 무게손실은 99%였고, EVA/LDH 3 wt% 나노복합막은 97.3%로 T. Kuila팀이 solution blending 방법으로 ethylene vinyl acetate와 Mg-Al LDH 나노복 합막을 제조하여 열적 안정성을 비교한 결과와 일치함 을 알 수 있다[19]. 이러한 결과를 통해 LDH가 3 wt% 정도의 소량 첨가된 경우에 열적 안정성이 증가하는 것 을 확인할 수 있다.

3.5. SEM 관찰

Fig. 8에 EVA 단일막과 EVA/LDH 3 wt% 나노복합 막의 단면을 분석한 결과를 나타내었다. EVA 단일막의 단면은 SEM 사진에서 보는 바와 같이 거친 면을 확인

x 250 10.0kV BET 24⁰ BD 8.0mm (b)

Fig. 8. SEM micrographs of cross-section of (a) pure EVA and (b) EVA/LDH 3 wt% nanocomposite membranes.

할 수 있다. 반면 EVA/LDH 3 wt% 나노복합막의 경우, EVA에 LDH가 첨가됨으로써 단일막에 비해 부드러우 면서 치밀해진 것을 확인하였다. 따라서 LDH가 삽입되 면서 고분자 계면과 LDH간의 인력이 증가했을 것으로 예상된다.

3.6. 기체 투과 특성

3.6.1. 기체 투과도 측정

LDH의 함량에 따른 EVA/LDH 나노복합막의 산소 투과도를 측정한 결과를 Fig. 9에 나타내었다. 먼저 압 력변화에 따른 투과도 변화를 살펴보면 EVA 단일막은 투과도 차이를 보이지 않았다. 그러나 EVA/LDH 1, 3 wt% 나노복합막의 경우 압력이 증가함에 따라 투과도 가 증가하는 양상을 보였다. EVA/LDH 5 wt% 나노복 합막의 경우 압력이 증가해도 투과도는 감소하였다. LDH 함량에 따른 나노복합막의 투과도를 비교해보면

Fig. 9. Permeability of O_2 in EVA and EVA/LDH nanocomposite membranes.

7 bar일 때 EVA 단일막의 투과도는 3.33 Barrer였고 EVA/LDH 3 wt% 나노복합막의 투과도는 2.17 Barrer 로 약 53% 감소한 것을 확인하였다. 그러나 LDH의 함 량이 5 wt%일 때는 약 2배정도 투과도가 증가하였다. 이 같은 결과는 TS 측정 및 SEM 관찰 결과와 일치하 는데 LDH 함량이 3 wt%일 때 LDH와 고분자 계면의 인력이 증가하면서 막이 좀 더 치밀해져 산소의 투과도 가 감소하였을 것이다. 또한 5 wt%로 LDH 함량이 증 가했을 때는 LDH의 응집현상으로 인하여 투과도가 증 가했을 것으로 생각된다. 이 결과는 Masoud. F 연구팀 [6]이 보고한 PP/EPDM에 결정을 삽입시켜 기체투과특 성을 연구한 결과에서도 같은 경향이 나타나는 것을 볼 수 있다.

EVA/LDH 나노복합막의 기체투과특성은 Maxwell's model로 설명할 수 있다[5].

$$P_{c} = P_{P}(\frac{1 - \Phi_{f}}{1 + 0.5\Phi_{f}}) \tag{2}$$

여기서 P_e와 P_p는 각각 나노복합막과 고분자 막의 투과도를 나타내고 Φ_f는 충진제의 부피비를 나타낸다. 식(2)에 의하면 LDH의 부피비가 커질수록 EVA/LDH 나노복합막의 투과도는 감소하게 된다. 그러나 실험적 으로 나노입자의 Φ값의 증가에 따라 응집하는 성질을 가지고 있기 때문에 Φ≤10% 까지만 유효하다[20]. 본 실험에서는 LDH 함량이 5 wt%일 때 나노 입자가 응집 한 것으로 생각된다. 따라서 3 wt% LDH가 첨가된 나 노복합막에서 가장 잘 분산되어있다고 보여진다.

Fig. 10. Permeability of CO_2 & O_2 in EVA/LDH 1 wt% nanocomposite membrane.

EVA/LDH 나노복합막의 이산화탄소 투과도 측정 실 험은 압력을 7 bar로 고정시킨 채 LDH의 함량을 달리 하여 진행하였다. 이산화탄소의 경우에도 기체 차단 특 성이 나타날 것으로 예상되었으나, 산소 투과도 측정실 험과 반대로 LDH가 첨가됨에 따라 이산화탄소의 투과 도가 증가하는 경향을 나타내었다. EVA 단일막의 투과 도는 46.2 Barrer였고 LDH의 함량이 1 wt%일 때 73 Barrer로 약 58 %정도 증가하였다. LDH의 함량이 3, 5 wt%로 증가함에 따라 이산화탄소의 투과도는 약간 감 소하는 경향을 보였다. LDH의 분산으로 인한 나노복합 막의 기체 투과도가 감소하는 현상이 증가하지만 LDH의 -OH기와 극성 CO₂ 기체 간의 친화력으로 인하여 나노 복합막과 CO₂ 간의 용해 선택도가 강화되어서 LDH 함량 이 증가하면서 투과도가 증가하는 것으로 보여진다[21].

Fig. 10은 Masoud의 연구에서 나타난 PP/EPDM blend membrane에 층상 결정을 첨가하여 함량에 따른 산소와 이산화탄소 투과도를 비교한 결과를 본 실험에서 측정 된 값과 함께 나타내었다[6]. Masoud의 연구에서는 이 산화탄소와 산소 투과도 모두 층상 결정의 함량이 증가 함에 따라 감소하는 경향을 보이고 있다.

3.6.2 기체 선택도

EVA 단일막의 CO₂에 대한 Fig. 11에서 약 14의 값 을 보이고 있고 이 결과는 S. Marais팀이 ethylene vinylacetate copolymer 필름에 대해 CO₂/O₂의 선택도를 분석한 결과와 비슷한 값을 나타낸다[10]. EVA에 LDH 가 3 wt% 첨가됨에 따라 선택도가 약 31로 증가하는 것을 확인하였다. 그러나 EVA/LDH 5 wt% 나노복합막

Fig. 11. Ideal selectivity of CO_2/O_2 in EVA and EVA/LDH nanocomposite membranes.

의 선택도는 약 10 정도로 급격히 감소하였다. 이러한 경향은 EVA에 LDH를 1, 3wt%로 소량 첨가 시에는 균질한 분산으로 막이 치밀한 구조를 가지게 되지만 LDH의 함량이 5 wt%로 증가하면서 입자의 응집현상 으로 인한 기체차단 특성이 줄어드는 원인과 EVA/LDH 나노복합막에 대한 CO₂의 높은 친화력이 분리 선택도 에 동시에 영향을 미친 것으로 보여진다.

4. 결 론

본 연구에서는 EVA/LDH 나노복합막에서 LDH 함 량에 따른 물리화학적, 기계적 물성과 기체투과 특성에 대해 알아보았다. EVA/LDH 나노복합막은 LDH를 DS 로 개질하고 용액 삽입법을 이용해 제조하였다. XRD 분석 결과 EVA/LDH 나노복합막에서 LDH의 층간 박 리가 일어났음을 확인하였다. 또한 LDH 3 wt%가 첨가 된 나노복합막의 기계적 강도는 34% 향상되었고 열적 안정성도 증가한 것으로 나타났다. SEM 관찰 결과에서 도 나노 복합막의 단면은 좀 더 치밀해진 것으로 나타 났다. EVA/LDH 나노복합막의 산소와 이산화탄소 단일 기체에 대한 기체투과 특성을 보면, 산소 기체의 투과 도는 EVA/LDH 3 wt%에서 2.17 Barrer로 약 53% 감 소하였다. 하지만 LDH 첨가량이 증가하면서 입자들의 응집으로 인하여 투과도는 다시 증가하는 경향이 나타 났다. 반면에 이산화탄소의 투과도는 나노복합막에서 투과도가 증가하는 것으로 나타났다. 이러한 결과는 이 산화탄소와 LDH 간의 높은 친화력이 영향을 준 것으 로 사료된다. CO₂/O₂ 이상 선택도는 EVA/LDH 3 wt% 에서 약 31로 가장 큰 값을 보이고 있다. 따라서 EVA/ LDH 나노복합막은 산소에 대해 기체투과도가 감소하 는 특성을 유지하면서 이산화탄소에 대하여 우수한 투 과도 성능을 나타내므로 CO₂ 분리막으로써의 가능성이 높다는 것을 보여주고 있다.

감 사

본 연구는 지식경제부 및 정보통신산업진흥원의 정보 통신연구기반구축사업(NIPA-2012-(I2209-12-1005)), 한국 과학기술연구원 미래원천연구사업(2E23943), 상명대학교 교내연구비지원에 의해 수행되었으며 이에 감사드립니다.

참고문 헌

- T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "Recent development trends of polymer membranes for gas separation", *Membrane Journal*, 20, 267 (2010).
- W. J. Koros, "Gas separation membranes: needs for combined materials science and processing approaches", *Macromol. Symp.*, 188, 13 (2002).
- 3. G. Maier, "Gas separation with polymer membrane", Angew. Chem. Int. ED., 37, 2960 (1998).
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).
- X. Liu, Y. Peng, and J. Shulan, "A new method to prepare organic-inorganic hybrid membranes", *De-salination*, 221, 376 (2008).
- F. Masoud and D. Susan, "Gas barrier properties of PP/EPDM blend nanocomposties", *J. Membr. Sci.*, 282, 142 (2006).
- H. S. Goo, I. H. Kim, Y. J. Kim, D. S. Joo, J. S. Park, J. K. Kim, and S.Y. Nam, "Preparation and properties of ionomer-clay hybrid gas barrier membrane", *Membrane Journal*, 14, 320 (2004).
- J. S. Park, J. W. Rhim, H. S. Goo, I. H. Kim, and S.Y. Nam, "Membrane application of polymer/layered silicate nanocomposite", *Membrane Journal*, 15, 255 (2005).
- 9. Y. Zhong, D. Janes, and Y. Zheng, "Mechanical

and Oxygen barrier properties of organoclay-polyethylene nanocomposite films", *Polym. Eng. Sci.*, DOI 10. 1002, 1101 (2007).

- S. Marais and J. M. Saiter, C. Devallencourt, Q. T. Nguyen, and M. Metayer, "Study of transport of small molecules through ethylene-co-vinyl acetate copolymers films. Part B. CO₂ abd O₂ gases", *Polym. Test.*, **21**, 425 (2002).
- S. Miyata, "Anion exchange properties of hydrotalcite-like compounds", *Clay. Clay. Min.*, **31**(4), 305 (1983).
- F. Cavani and A. Vaccari, "Hydrotalcite-type anionic clays: Preparation, properties and applications", *Catal. Today*, **11**, 173 (1991).
- J. H. Choy and S. Y. Kwak, "Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide", *J. Am. Chem. Soc.*, **121**, 1399 (1999).
- F. R. Costa and A. Leuteritz, "Intercalation of Mg-Al layered double hydroxides by anionic surfactants: Preparation and characterization", *Appl. Clay. Sci.*, 38(3-4), 153 (2008).
- B. Wang, H. Zhang, and D. G. Evans, "Surface modification of layered double hydroxodes and incorparation of hydrophobic organic compounds", *J. Mater. Chem. Physics*, **92**, 190 (2005).

- H. B. H and C. Y. C, "Preparation and properties of LDHs/Polyimide nanocomposites", *Polym.*, 44, 1151 (2003).
- J. P. Ramirez, G. Mul, F. Kaptejin, and J. A. Moulijn, "A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites", *J. Mater. Chem.*, **11**, 2529 (2001).
- T. Kuila, S. K. Srivastava, and A. K. Bhowmick, "Synthesis and characterization of ethylene vinyl acetate/Mg-Al layered double hydroxide nanocomposites", *J. App. Poly. Sci.*, DOI 10.1002/app 25840.
- T. Kuila and S. K. Srivastava, "Thermoplastic polyolefin based polymer-blend-layered double hydroxide nanocomposites", *Com. Sci. Tech.*, 68, 3234 (2009).
- G. Choudalakis and A. D. Gotsis, "Permeability of polymer/clay nanocomposites : A review", *European. Polym. J.*, 45, 967 (2009).
- C. Halin and R. Maciej, "Polymer-inorganic nanocomposite membranes for gas separation", *Sep. Purif. Tech.*, **55**, 281 (2007).