Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads: Effect of Organic Matters, Adsorption and Photo-oxidation at Water Back-flushing

관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리: 물 역세척 시 유기물 및 흡착, 광산화의 영향

  • Park, Sung Woo (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin Yong (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 박성우 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 환경생명공학과)
  • Received : 2013.04.04
  • Accepted : 2013.04.23
  • Published : 2013.04.30

Abstract

The effect of humic acid (HA), and the roles of microfiltration (MF), PES (polyethersulfone) beads adsorption, and photo-oxidation were investigated in hybrid process of ceramic MF and PES beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment. The results of water and nitrogen back-flushing were compared in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). Because membrane fouling increased dramatically as increasing HA, Rf increased and J decreased, and finally $V_T$ was the highest at 2 mg/L HA. Average turbidity treatment efficiencies were almost same independent of HA concentration. Average organic matter treatment efficiency was the minimum 71.4% at 10 mg/L HA in water back-flushing, but those were almost constant in nitrogen back-flushing. The hybrid process of MF, PES beads, and UV (MF + $TiO_2$ + UV) have the lowest $R_f$, and the highest J and $V_T$ in both water and nitrogen back-flushing. The turbidity and organic matter treatment efficiencies were the maximum at MF + $TiO_2$ + UV independent of water and nitrogen back-flushing, and decreased sequently as simplifying the process to MF. However, adsorption performed the more important role than photo-oxidation in water back-flushing, and photo- oxidation was the more than adsorption in nitrogen back-flushing.

고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄($TiO_2$) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 주기적 물 역세척 시 유기물질의 영향 및 정밀여과(MF), PES 구 흡착, 광산화의 역할을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총여과부피($V_T$) 측면에서 기존의 질소 역세척 결과와 비교하였다. 휴믹산 농도가 증가함에 따라 급격한 막오염으로 $R_f$는 증가하고 J는 감소하여, $V_T$는 휴믹산 농도 2 mg/L에서 가장 높았다. 탁도 처리효율은 물과 질소 역세척 모두 휴믹산 농도와 상관없이 비슷하였다. 유기물질 처리효율은 물 역세척 경우 최대 휴믹산 10 mg/L에서 최소 71.4%이었으나, 질소 역세척에서는 거의 일정하였다. 물과 질소 역세척 모두 MF 및 PES 구, 자외선의 혼성공정(MF + $TiO_2$ + UV)에서 $R_f$가 최소이고, J와 $V_T$는 최대였다. 탁도 및 유기물질의 처리효율도 물과 질소 역세척에 상관없이 MF + $TiO_2$ +UV에서 최대였고, 공정이 MF로 단순화 될수록 처리효율도 점차 감소하였다. 하지만 물 역세척에서는 광산화 보다 흡착이, 질소 역세척에서는 흡착 보다 광산화가 더 주요한 역할을 하였다.

Keywords

References

  1. H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_{2}$ photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted depositionmethod and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003). https://doi.org/10.1016/S0168-583X(03)00895-4
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
  5. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  6. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  7. T. H. Bae and T. M. Tak, "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
  8. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  9. K. Azrague, E. Puech-costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  10. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst: 2. Effect of photo-oxidation and adsorption", Membrane Journal, 21, 201 (2011).
  11. I. R. Bellobono and B. Barni, F. Gianturco, "Preindustrial experience in advanced oxidation and integral photodegradation of organics in potable waters and waste waters by $PHOTHOPERM^{TM}$ membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  12. R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, "Study on a photocatalytic membrane reactor for water purification", Catal. Today, 55, 71 (2000). https://doi.org/10.1016/S0920-5861(99)00227-8
  13. R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  14. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  15. J. Kleine, K.V. Peinemann, C. Schuster, H. J. and Warnecke, "Multifunctional system for treatment of waste-waters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002). https://doi.org/10.1016/S0009-2509(02)00043-X
  16. K. Karakulski, W. A. Morawski, J. Grzechulska, K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Separ. & Purification Technol., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  17. W. Xi and S. U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Wat. Res., 35, 1256 (2001). https://doi.org/10.1016/S0043-1354(00)00378-X
  18. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  19. M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  20. S. T. Hong and J. Y. Park, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of organic matters, adsorption and photo-oxidation at nitrogen back-flushing", Membrane Journal, 23, 61 (2013).
  21. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid rocess of ceramic ultrafiltration and photocatalyst: 1. Effect of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
  22. A. Figoli, G. De Luca, E. Longavita, and E. Drioli, "PEEKWC capsules prepared by phase inversion technique: a morphological and dimensional study", Sep. Sci. Tech., 42, 2809 (2007). https://doi.org/10.1080/01496390701558284
  23. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  24. J. Y. Park and S. H. Lee, "Effect of water-backflushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  25. H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
  26. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and $O_{3}$/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  27. M. Cheryan, "Ultrafiltration Handbook", Technomic Pub. Co., Lancater, PA (1984).