Inhibitory Effect of Snake Venom Toxin on Colorectal Cancer HCT116 Cells Growth through Induction of Intrinsic or Extrinsic Apoptosis

  • Kim, Kyung Tae (Department of Acupuncture & Moxibustion Medicine, College of Oriental Medicine, Gachon University) ;
  • Song, Ho Sueb (Department of Acupuncture & Moxibustion Medicine, College of Oriental Medicine, Gachon University)
  • 투고 : 2013.01.17
  • 심사 : 2013.01.25
  • 발행 : 2013.02.20

초록

I investigated whether snake venom toxin(SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, 8, 9 and Bax. However, the expression of survival proteins(eg, cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the reactive oxygen species(ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the apoptosis related protein such as caspase-3 and-9 as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in human colorectal cancer HCT116 cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS pathway signals.

키워드

참고문헌

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009 ; 59(4) : 225-249. https://doi.org/10.3322/caac.20006
  2. Danaei G, Van der Hoorn S, Lopez AD, Murray CJL, Ezzati M. The comparative risk assessment collaborating group (cancers), causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005 ; 366(9499) : 1784-1793. https://doi.org/10.1016/S0140-6736(05)67725-2
  3. Scheele J, Altendorf-Hofmann A. Resection of colorectal liver metastases. Langenbeck's Arch Surg. 1999 ; 384(4) : 313-327. https://doi.org/10.1007/s004230050209
  4. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004 ; 22(1) : 23-30. https://doi.org/10.1200/JCO.2004.09.046
  5. Kamb A, Wee S, Lengauer C. Why is cancer drug discovery so difficult? Nature Rev Drug Discovery. 2007 ; 6(2) : 115-120. https://doi.org/10.1038/nrd2155
  6. Dalerba P, Cho RW, Clarke MF. Cancer Stem Cells: Models and Concepts. Annual Rev Med. 2007 ; 58 : 267-284. https://doi.org/10.1146/annurev.med.58.062105.204854
  7. Koschny R, Walczak H, Ganten TM. The promise of TRAIL: potential and risks of a novel anticancer therapy. J Mol Med. 2007 ; 85(9) : 923-935. https://doi.org/10.1007/s00109-007-0194-1
  8. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008 ; 8(10) : 782-798. https://doi.org/10.1038/nrc2465
  9. Bin L, Thorburn J, Thomas LR, Clark PE, Humphreys R, Thorburn A. Tumor-derived mutations in the TRAIL receptor DR5 inhibit TRAIL signaling through the DR4 receptor by competing for ligand binding. J Biol Chem. 2007 ; 282(38) : 28189-28194. https://doi.org/10.1074/jbc.M704210200
  10. Lee SH, Shin MS, Kim HS et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin's lymphoma. Oncogene. 2001 ; 20(3) : 399-403. https://doi.org/10.1038/sj.onc.1204103
  11. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. 1999 ; 59(3) : 734-741.
  12. Lacour S, Hammann A, Wotawa A, Corcos L, Solary E, Dimanche-Boitrel MT. Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis, Cancer Res. 2001 ; 61(4) : 1645-1651.
  13. Prasad S, Yadav VR, Kannappan R, Aggarwal BB. Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors: evidence for the role of reactive oxygen species and JNK. J Biol Chem. 2011 ; 286(7) : 5546-5557. https://doi.org/10.1074/jbc.M110.183699
  14. Prasad S, Yadav VR, Ravindran J, Aggarwal BB. ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. CancerRes. 2011 ; 71(2) : 538-549.
  15. Sung B, Ravindran J, Prasad S, Pandey MK, Aggarwal BB. Gossypol induces death receptor- 5 through activation of the ROS-ERKCHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem. 2010 ; 285(46) : 35418-35427. https://doi.org/10.1074/jbc.M110.172767
  16. Jung EM, Lim JH, Lee TJ, Park JW, Choi KS, Kwon TK. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)- induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5(DR5). Carcinogenesis. 2005 ; 26(11) : 1905-1913. https://doi.org/10.1093/carcin/bgi167
  17. Taniguchi H, Yoshida T, Horinaka M et al. Baicalein overcomes tumor necrosis factorrelated apoptosis-inducing ligand resistance via two different cell-specific pathways in cancer cells but not in normal cells. Cancer Res. 2008 ; 68(21) : 8918-8927. https://doi.org/10.1158/0008-5472.CAN-08-1120
  18. Su RY, Chi KH, Huang DY, Tai MH, Lin WW. 15-deoxy-Delta12, 14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription, Mol Cancer Ther. 2008 ; 7(10) : 3429-3440. https://doi.org/10.1158/1535-7163.MCT-08-0498
  19. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998 ; 281(5381) : 1305-1308. https://doi.org/10.1126/science.281.5381.1305
  20. Wajant H, Gerspach J, Pfizenmaier K. Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev. 2005 ; 16(1) : 55-76. https://doi.org/10.1016/j.cytogfr.2004.12.001
  21. Sprick MR, Weigand MA, Rieser E et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity. 2000 ; 12(6) : 599-609. https://doi.org/10.1016/S1074-7613(00)80211-3
  22. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95(APO-1/Fas) signaling pathways. EMBO J. 1998 ; 17(6) : 1675-1687. https://doi.org/10.1093/emboj/17.6.1675
  23. Luo X, Budihardjo I, Zou H, Slaughter, C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998 ; 94(4) : 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  24. Chai J, Du C, Wu JW et al, Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000 ; 406(6798) : 855-862. https://doi.org/10.1038/35022514
  25. Wei MC, Zong WX, Cheng EH et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001 ; 292(5517) : 727-730. https://doi.org/10.1126/science.1059108
  26. Wang C, Chen T, Zhang N et al. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMK II-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J Biol Chem. 2009 ; 284(6) : 3804-3813. https://doi.org/10.1074/jbc.M807191200
  27. Horita H, Thorburn J, Frankel AE, Thorburn A. EGFR-targeted diphtheria toxin stimulates TRAIL killing of glioblastoma cells by depleting anti-apoptotic proteins. J Neurooncol. 2009 ; 95(2) : 175-184. https://doi.org/10.1007/s11060-009-9914-4
  28. Son DJ, Park MH, Chae SJ et al. Inhibitory effect of SVT from Vipera lebetina turanica on hormone-refractory human prostate cancer cell growth: induction of apoptosis through inactivation of nuclear factor kappaB. Mol Cancer Ther. 2007 ; 6(2) : 675-683.
  29. Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003 ; 2(10) : 790-802. https://doi.org/10.1038/nrd1197
  30. Nasiripourdori A, Taly V, Grutter T, Taly A. From toxins targeting ligand gated ion channels to therapeutic molecules. Toxins(Basel). 2011 ; 3(3) : 260-293.
  31. Birrell GW, Earl ST, Wallis TP et al. The diversity of bioactive proteins in Australian Snake Venoms, Mol. Cell Proteomics. 2007 ; 6(6) : 973-986. https://doi.org/10.1074/mcp.M600419-MCP200
  32. Paleari L, Cesario A, Fini M, Russo P. Alpha7- Nicotinic receptor antagonists at the beginning of a clinical era for NSCLC and Mesothelioma? Drug Discov Today. 2009 ; 14(17-18) : 822-836. https://doi.org/10.1016/j.drudis.2009.06.016
  33. Park MH, Son DJ, Kwak DH et al. Snake venom toxin inhibits cell growth through induction of apoptosis in neuroblastoma cells. Arch Pharm Res. 2009 ; 32(14-18) : 1545-1554. https://doi.org/10.1007/s12272-009-2106-0
  34. Park MH, Jo MR, Won D et al. Snake venom toxin from Vipera lebetina turanica induces apoptosis in colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression. BMC Cancer. 2012 ; 12(1) : 228. https://doi.org/10.1186/1471-2407-12-228
  35. Rauert H, Stuhmer T, Bargou R, Wajant H, Siegmund D. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. CellDeathDis. 2011 ; 2 : e194.
  36. Yadav VR, Prasad S, Aggarwal BB. Cardamonin Sensitizes Tumor Cells to TRAIL Through ROS- and CHOP-Mediated Upregulation of Death Receptors and Downregulation of Survival Proteins. Br J Pharmacol. 2012 ; 165(3) : 741-753. https://doi.org/10.1111/j.1476-5381.2011.01603.x
  37. Ashkenazi A, Herbst RS. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest. 2008 ; 118(6) : 1979-1990. https://doi.org/10.1172/JCI34359
  38. Eberle J, Fecker LF, Forschner T, Ulrich C, Röwert-Huber J, Stockfleth E. Apoptosis pathways as promising targets for skin cancer therapy. Br J Dermatol. 2007 ; 156(3) : 18-24. https://doi.org/10.1111/j.1365-2133.2007.07855.x
  39. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta. 2010 ; 1805(2) : 123-140.
  40. Jung YH, Heo J, Lee YL, Kwon TK, Kim YH. Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Science. 2010 ; 86(9-10) : 351-357. https://doi.org/10.1016/j.lfs.2010.01.008
  41. Kim MO, Moon DO, Kang CH, Kwon TK, Choi YH, Kim GY. TRAIL-induced apoptosis in hepatocellular carcinoma cells through Sp1- dependent upregulation of DR5 and downregulation of NF-kappaB activity. Mol Cancer Ther. 2010 ; 9(4) : 833-843 https://doi.org/10.1158/1535-7163.MCT-09-0610
  42. Wang S, El-Deiry WS. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 2003 ; 22(53) : 8628-8633. https://doi.org/10.1038/sj.onc.1207232
  43. Jäättelä M. Escaping cell death: survival proteins in cancer. Exp Cell Res. 1999 ; 248 : 30-43. https://doi.org/10.1006/excr.1999.4455
  44. Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB. Garcinol potentiates TRAILinduced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther. 2010 ; 9(9) : 856-868. https://doi.org/10.1158/1535-7163.MCT-09-1113
  45. Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ. Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol. 2008 ; 75(10) : 1946-1958. https://doi.org/10.1016/j.bcp.2008.02.016
  46. Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. Quercetin enhances TRAILmediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther. 2007 ; 6(9) : 2591-2599. https://doi.org/10.1158/1535-7163.MCT-07-0001
  47. Sung B, Park B, Yadav VR, Aggarwal BB. Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. JBiolChem. 2010 ; 285(15) : 11498-11507.
  48. Vinatier D, Dufour Ph, Subtil D. Apoptosis: A programmed cell death involved in ovarian and uterine physiology. Eur J Obstet Gynecol Reprod Biol. 1996 ; 67(2) : 85-102. https://doi.org/10.1016/0301-2115(96)02467-0
  49. Das GC, Holiday D, Gallardo R, Haas C. Taxol-induced cell cycle arrest and apoptosis: Dose--response relationship in lung cancer cells of different wildtype p53 status and under isogenic condition. Cancer Lett. 2001 ; 165(2) : 147-153. https://doi.org/10.1016/S0304-3835(01)00404-9
  50. Debatin KM. Activation of apoptosis pathways by anticancer treatment. Toxicol. Lett. 2000 ; 112-113 : 41-48. https://doi.org/10.1016/S0378-4274(99)00252-0
  51. da Silva CP, de Oliveira CR, da Conceicao P, de Lima M. Apoptosis as a mechanism of cell death induced by different chemotherapeutic drugs in human leukemic T-lymphocytes. Biochem. Pharmacol. 1996 ; 51(10) : 1331-1340. https://doi.org/10.1016/0006-2952(96)00041-X
  52. Wyllie AH, Kerr JF. Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol. 1980 ; 68(68) : 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  53. Pulido MD, Parrish AR. Metal-induced apoptosis: Mechanisms. Mutat Res 2003 ; 533(1-2) : 227-241 https://doi.org/10.1016/j.mrfmmm.2003.07.015
  54. Selimovic D, Hassan M, Haike Y, Hengge UR. Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal. 2008 ; 20(2) : 311-322. https://doi.org/10.1016/j.cellsig.2007.10.015
  55. Barbu A, Welsh N, Saldeen J. Cytokine-induced apoptosis and necrosis are preceded by disruption of the mitochondrial membrane potential ($\Delta\psi$m) in pancreatic RINm5F cells: Prevention by Bcl-2. Mol. Cell Endocrinol. 2002 ; 190(1-2) : 75-82. https://doi.org/10.1016/S0303-7207(02)00009-6
  56. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol. Med. 2001 ; 7(7) : 314-319. https://doi.org/10.1016/S1471-4914(01)02026-3
  57. Li JY, Xu ZJ, Tan MY, Su WK, Gong XG. 3-(4-(Benzo[d]thiazol-2-yl)-1-phenyl-1Hpyrazol3-yl) phenyl acetate induced HepG2 cell apoptosis through a ROS-mediated pathway. Chem Biol Interact. 2010 ; 183(3) : 341-348. https://doi.org/10.1016/j.cbi.2009.12.008
  58. Kim H, Kim EH, Eom YW, et al. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-i nducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res. 2006 ; 66(3) : 1740-1750. https://doi.org/10.1158/0008-5472.CAN-05-1568