Inhibitory Effects of Bee Venom on Growth of A549 Lung Cancer Cells via Induction of Death Receptors

  • Jang, Dong Min (Department of Acupuncture & Moxibustion Medicine, College of Oriental Medicine, Gachon University) ;
  • Song, Ho Sueb (Department of Acupuncture & Moxibustion Medicine, College of Oriental Medicine, Gachon University)
  • 투고 : 2013.01.17
  • 심사 : 2013.02.07
  • 발행 : 2013.02.20

초록

This study was to investigated the effects of the bee venom on inhibition of cell growth via upregulation of death receptor expression in the A549 human lung cancer cells. Bee venom(1-5 ${\mu}g$/ml) inhibited the growth of A549 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of TNFR1, Fas, death receptors(DR) 3, 4 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, -9 and Bax was concomitantly increased, but the expression of Bcl-2, NF-${\kappa}B$ were inhibited by treatment with bee venom in A549 cells. Moreover, deletion of DR3, DR4 by small interfering RNA significantly reversed bee venom-induced cell growth inhibitory effect, whereas Apo3L strengthened anti-proliferative effect of bee venom through enhancement of DR3 expression. These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

키워드

참고문헌

  1. Ginsber RJ, Kris MK, Armstrong JG. Cancer of the lung in Principles and Practice of Oncology, 4th ed(DeVita DT Jr, Hellman S, Rosenberg SA eds). Philadelphia PA : Lippincott-Raven Publishers. 1993 ; 673-682.
  2. Jemal A, Siegel R, Ward E et al. Cancer statistics. CA Cancer J Clin. 2008 ; 58(2) : 71-96. https://doi.org/10.3322/CA.2007.0010
  3. de Petris L, Crino L, Scagliotti GV et al. Treatment of advanced non-small cell lung cancer. Ann Oncol. 2006 ; 2 : 1136-1141.
  4. Giaccone G. Clinical perspectives on platinum resistance. Drugs. 2000 ; 59(4) : 9-17.
  5. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Int Med. 2005 ; 258(6) : 479-517. https://doi.org/10.1111/j.1365-2796.2005.01570.x
  6. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005 ; 55(3) : 178-194. 71-96. https://doi.org/10.3322/canjclin.55.3.178
  7. Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000 ; 92(13) : 1042-1053. https://doi.org/10.1093/jnci/92.13.1042
  8. O'Donovan TR, O'Sullivan GC, McKenna S. Induction of autophagy by drugresistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy. 2011 ; 7(5) : 509-524. https://doi.org/10.4161/auto.7.5.15066
  9. Kang YJ, Kim IY, Kim EH et al. Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5. Exp Mol Med. 2011 ; 43(1) : 24-34. https://doi.org/10.3858/emm.2011.43.1.003
  10. Zhu DM, Shi J, Liu S, Liu Y, Zheng D. HIV infection enhances TRAIL-induced cell death in macrophage by down-regulating decoy receptor expression and generation of reactive oxygen species. PLoS One. 2011 ; 6(4) : e18291. https://doi.org/10.1371/journal.pone.0018291
  11. Yoshida T, Horinaka M, Sakai T. "Combinationoriented molecular-targeting prevention" of cancer: a model involving the combination of TRAIL and a DR5 inducer. Environ. Health Prev. Med. 2010 ; 15(4) : 203-210. https://doi.org/10.1007/s12199-009-0128-3
  12. Inoue N, Matsuda F, Goto Y, Manabe N. Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary. J Reprod Dev. 2011 ; 57(2) : 169-175. https://doi.org/10.1262/jrd.10-198E
  13. Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008 ; 19(3-4) : 325-331. https://doi.org/10.1016/j.cytogfr.2008.04.001
  14. Elrod HA, Sun SY. Modulation of death receptors by cancer therapeutic agents. Cancer Biol Ther. 2008 ; 7(2) : 163-173. https://doi.org/10.4161/cbt.7.2.5335
  15. Sun SY. Understanding the role of the death receptor 5/FADD/caspase-8 death signaling in cancer metastasis. Mol Cell Pharmacol. 2011 ;3(1) : 31-34.
  16. Gonzalvez F, Ashkenazi A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene. 2010 ; 29(34) : 4752-4765. https://doi.org/10.1038/onc.2010.221
  17. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onsetprogression and therapy. Nat Rev Cancer. 2008 ; 8(10) : 782-798. https://doi.org/10.1038/nrc2465
  18. Stegehuis JH, de Wilt LH, de Vries EG, Groen HJ, de Jong S, Kruyt FA. TRAIL receptor targeting therapies for non-small cell lung cancer: current status and perspectives, Drug Resist. Updates. 2010 ; 13(1-2) : 2-5. https://doi.org/10.1016/j.drup.2009.11.001
  19. Van Geelen CM, de Vries EG, de Jong S. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updates. 2004 ; 7(6) : 345-358. https://doi.org/10.1016/j.drup.2004.11.002
  20. Abdulghani J, El-Deiry WS. TRAIL receptor signaling and therapeutics, Exp Opin Therapeut Targets. 2010 ; 14(10) : 1091-1108. https://doi.org/10.1517/14728222.2010.519701
  21. Jin CY, Park C, Hwang HJ et al. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells, Mol. Nutr Food Res. 2011 ; 55(2) : 300-309. https://doi.org/10.1002/mnfr.201000024
  22. Lu M, Strohecker A, Chen F et al. Aspirin sensitizes cancer cells to TRAIL-induced apoptosis by reducing survivin levels, Clin. Cancer Res. 2008 ; 14(10) : 3168-3176. https://doi.org/10.1158/1078-0432.CCR-07-4362
  23. Park HJ, Lee SH, Son DJ et al. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NFkappaB through interaction with the p50 subunit. Arthritis Rheum. 2004 ; 50(11) : 3504-3515. https://doi.org/10.1002/art.20626
  24. Park JH, Jeong YJ, Park KK et al. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol Cells. 2010 ; 29(2) : 209-215. https://doi.org/10.1007/s10059-010-0028-9
  25. Park MH, Choi MS, Kwak DH et al. Anticancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-Κ$\beta$. Prostate. 2011 ; 71(8) : 801-812. https://doi.org/10.1002/pros.21296
  26. Liu S, Yu M, He Y et al. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology. 2008 ; 47(6) : 1964-1973. https://doi.org/10.1002/hep.22240
  27. Jang MH, Shin MC, Lim S et al. Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci. 2003 ; 91(2) : 95-104. https://doi.org/10.1254/jphs.91.95
  28. Hengartner MO. The biochemistry of apoptosis. Nature. 2000 ; 407(6805) : 770-776. https://doi.org/10.1038/35037710
  29. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med. 2001 ; 7(7) : 314-319. https://doi.org/10.1016/S1471-4914(01)02026-3
  30. Li JY, Xu ZJ, Tan MY, Su WK, Gong XG. 3-(4-(Benzo[d]thiazol-2-yl)-1-phenyl-1Hpyrazol -3-yl) phenyl acetate induced HepG2 cell apoptosis through a ROS-mediated pathway. Chem Biol Interact. 2010 ; 183(3) : 341-48. https://doi.org/10.1016/j.cbi.2009.12.008
  31. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998 ; 281(5831) : 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  32. Cain K, Brown DG, Langlais C, Cohen GM. Caspase activation involves the formation of the aposome, a large(approximately 700 kDa) caspaseactivating complex. J Biol Chem. 1999 ; 274(32) : 22686-22682. https://doi.org/10.1074/jbc.274.32.22686
  33. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol. 1999 ; 17 : 331-7. https://doi.org/10.1146/annurev.immunol.17.1.331
  34. Old LJ. Tumor necrosis factor. Sci Am. 1988 ; 258(5) : 59-60. https://doi.org/10.1038/scientificamerican0588-59
  35. Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA, Jr and Goeddel DV. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA. 1991 ; 88(20) : 9292-9296. https://doi.org/10.1073/pnas.88.20.9292
  36. Beutler B, van Huffel C. Unraveling function in the TNF ligand and receptor families. Science. 1994 ; 264(5159) : 667-668. https://doi.org/10.1126/science.8171316
  37. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994 ; 76(6) : 959-962. https://doi.org/10.1016/0092-8674(94)90372-7
  38. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "cidic"c sphingomyelin breakdown. Cell. 1992 ; 71(5) : 765-776. https://doi.org/10.1016/0092-8674(92)90553-O
  39. Laegreid A, Medvedev A, Nonstad U et al. Tumor necrosis factor receptor p75 mediates cell-specific activation of nuclear factor kappa B and induction of human cytomegalovirus enhancer. J Biol Chem. 1994 ; 269(10) : 7785-7791.
  40. Mukhopadhyay A, Suttles J, Stout RD, Aggarwal BB. Genetic deletion of the tumor necrosis factor receptor p60 or p80 abrogates ligandmediated activation of nuclear factor-kappa B and of mitogen-activated protein kinases in macrophages. J Biol Chem 2001 ; 276(34) : 31906-31912. https://doi.org/10.1074/jbc.M105252200
  41. Grell M, Becke FM, Wajant H, Mannel DN, Scheurich P. TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur J Immunol. 1998 ; 28(1) : 257-263. https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<257::AID-IMMU257>3.0.CO;2-G
  42. Medvedev AE, Espevik T, Ranges G, Sundan A. Distinct roles of the two tumor necrosis factor(TNF) receptors in modulating TNF and lymphotoxin alpha effects. J Biol Chem. 1996 ; 271(16) : 9778-9784. https://doi.org/10.1074/jbc.271.16.9778
  43. Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995 ; 269(5229) : 1424-1427. https://doi.org/10.1126/science.7544915
  44. Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell. 1994 ; 78(4) : 681-692. https://doi.org/10.1016/0092-8674(94)90532-0
  45. Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA. Effects of Bcl-2 levels on Fas signaling-induced Caspase-3 activation: molecular genetic tests of computational model predictions, J Immunol vol. 2005 ; 175(2) : 985-995 https://doi.org/10.4049/jimmunol.175.2.985
  46. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood. 1995 ; 85(12) : 3378-3404.
  47. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992 ; 10 : 411-452. https://doi.org/10.1146/annurev.iy.10.040192.002211
  48. Nagata S. Apoptosis by death factor. Cell. 1997 ; 88(3) : 355-365. https://doi.org/10.1016/S0092-8674(00)81874-7
  49. Marsters S, Sheridan J, Donahue C et al. Apo3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-$\kappa$B. Curr Biol. 1996 ; 6(12) : 1669-1676. https://doi.org/10.1016/S0960-9822(02)70791-4
  50. Chinnaiyan AM, O'ourke K, Yu GL et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 1996 ; 274(5289) : 990-992. https://doi.org/10.1126/science.274.5289.990
  51. Kitson J, Raven T, Jiang YP et al. A deathdomain- containing receptor that mediates apoptosis. Nature. 1996 ; 384(6607) : 372-375. https://doi.org/10.1038/384372a0
  52. Bodmer JL, Burns K, Schneider P et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis receptor 1 and Fas(Apo-1/CD95). Immunity. 1997 ; 6(1) : 79-88. https://doi.org/10.1016/S1074-7613(00)80244-7
  53. Screaton G, Xu X, Olsen A et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 1997 ; 94(9) : 4615-4619. https://doi.org/10.1073/pnas.94.9.4615
  54. Golstein P. Cell death: TRAIL and its receptors. Curr Biol. 1997 ; 7(12) : R750-R753. https://doi.org/10.1016/S0960-9822(06)90000-1
  55. Ray S, Almasan A. Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2ligand/tumor necrosis factorrelated apoptosis-inducing ligand and CPT-11. Cancer Res. 2003 ; 63(15) : 4713-4723.
  56. Shankar S, Singh TR, Chen X, Thakkar H, Firnin J, Srivastava RK. The sequential treatment with ionizing radiation followed by TRAIL/ Apo-2L reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice. Int J Oncol. 2004 ; 24(5) : 1133-1140.
  57. Sheridan JP, Marsters SA, Pitti RM et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997 ; 277(5327) : 818-821. https://doi.org/10.1126/science.277.5327.818
  58. Hannon GJ. RNA interference. Nature. 2002 ; 418(6894) : 244-251. https://doi.org/10.1038/418244a
  59. Huerta-Yepez S, Vega M, Jazirehi A et al. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene. 2004 ; 23(9) : 4993-5003. https://doi.org/10.1038/sj.onc.1207655
  60. Jazirehi AR, Ng CP, Gan XH, Schiller G, Bonavida B. Adriamycin sensitizes the adriamycinresistant 8226/Dox40 human multiple myeloma cells to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)-mediated apoptosis. Clin Cancer Res. 2001 ; 7(12) : 3874-3883.
  61. Tillman DM, Izeradjene K, Szucs KS, Douglas L, Houghton JA. Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C. Cancer Res. 2003 ; 63(16) : 5118-5125.