DOI QR코드

DOI QR Code

Protective Effects of Perilla frutescens Britt var. japonica Extracts from Oxidative Stress in Human HaCaT Keratinocytes

HaCaT 피부각질세포에서 들깻잎 추출물의 산화적 스트레스에 대한 항산화 효과

  • Ji, Na (Dept. of Food Science and Nutrition and Kimchi Research Institute, Pusan National University) ;
  • Song, Jia-Le (Dept. of Food Science and Nutrition and Kimchi Research Institute, Pusan National University) ;
  • Kil, Jeung-Ha (Dept. of Food Science and Nutrition and Kimchi Research Institute, Pusan National University) ;
  • Park, Kun-Young (Dept. of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
  • 지나 (부산대학교 식품영양학과 및 김치연구소) ;
  • 송가락 (부산대학교 식품영양학과 및 김치연구소) ;
  • 길정하 (부산대학교 식품영양학과 및 김치연구소) ;
  • 박건영 (부산대학교 식품영양학과 및 김치연구소)
  • Received : 2012.11.08
  • Accepted : 2012.12.14
  • Published : 2013.02.28

Abstract

The aim of this study was to investigate the protective effects of methanolic extract from perilla (Perilla frutescens Britt var. japonica) leaves (PLME) on oxidative injury from hydrogen peroxide ($H_2O_2$) in human HaCaT keratinoctyes. Cells were co-incubated with various concentrations (0~200 ${\mu}g/mL$) of PLME for 24 hr, and then exposed to $H_2O_2$ (500 ${\mu}M$) for 4 hr. $H_2O_2$ significantly decreased cell viability (p<0.05). However, PLME provided protection from $H_2O_2$-induced HaCaT cell oxidation in a dose-dependent manner. To further investigate the protective effects of PLME on $H_2O_2$-induced oxidative stress in HaCaT cells, the cellular levels of lipid peroxidation, and antioxidant enzymes (including superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT)) were measured. PLME decreased cellular levels of lipid peroxidation, and also increased the activities of antioxidant enzymes. In addition, the antioxidant activities of PLME were also determined by DPPH and hydroxyl (${\cdot}OH$) radical scavenging assay, and major antioxidant compounds of PLME were measured by colorimetric methods. DPPH and ${\cdot}OH$ radical scavenging activities of PLME increased in a dose dependent manner and was similar to the DPPH scavenging activity of ascorbic acid at 50 ${\mu}g/mL$; however PLME activities were stronger than ascorbic acid (50 ${\mu}g/mL$) in the ${\cdot}OH$ scavenging assay. The amounts of antioxidant compounds, including total polyphenolics, total flavonoids, and total ascorbic acid from PLME were $52.2{\pm}1.1$ mg gallic acid (GAE)/g, $33.7{\pm}4.7$ mg rutin (RUE)/g, and $17.0{\pm}0.5$ mg ascorbic acid (AA)/g, respectively. These results suggest that PLME has a strong free radical-scavenging activity and a protective effect against $H_2O_2$-induced oxidative stress in the keratinocytes.

들깻잎 메탄올추출물(PLME)이 가지는 산화적 스트레스 개선효과를 확인하기 위하여 $H_2O_2$으로 유도된 산화적 스트레스에 대한 HaCaT 피부 각질세포의 보호효과를 조사하였다. 또한 PLME의 항산화 능력을 확인하기 위하여 DPPH, hydroxyl free radical 소거능 및 총 항산화물질(페놀류, 플라보노이드류 및 아스코르브산) 함량을 조사하였다. $H_2O_2$(500 ${\mu}M$)에 의한 산화적 스트레스가 유발된 HaCaT세포에 PLME를 처리한 결과, 농도 의존적으로 세포의 생존율이 증가하였고, 세포 지질과산화물질 MDA의 생성효과는 PLME 처리에 의해 유의적으로 감소하는 것을 관찰하였다. 또한 $H_2O_2$로 인하여 세포내 항산화효소인 SOD, GSH-px와 CAT 등의 활성이 감소된 HaCaT세포에 PLME를 처리했을 때, 이들 효소의 활성이 농도 의존적으로 증가되었다. PLME의 DPPH와 hydroxyl radical 소거능을 측정한 결과, 농도 의존적으로 radical 소거능이 증가함을 알 수 있었다. 50 ${\mu}g/mL$ 이상 농도의 PLME의 DPPH 소거능은 60%의 저해율을 나타낸 천연항산화제인 아스코르브산(50 ${\mu}g/mL$)과 유사한 효과를 보였고, ${\cdot}OH$ radical 소거능은 아스코르브산(50 ${\mu}g/mL$)보다 높은 결과를 나타냈다. 또한 PLME가 함유하고 있는 항산화물질인 폴리페놀류, 플라보노이드류, 아스코르브산의 함량을 측정한 결과 총 페놀류화합물은 $52.2{\pm}1.1$ mg GAE/g, 총 플라보노이드화합물은 $33.7{\pm}4.7$ mg RUE/g, 아스코르브산의 함량은 $17.0{\pm}0.5$ mg AA/g으로 나타났다. HaCaT 세포에서 $H_2O_2$에 의해 발생하는 산화적 스트레스에 대한 보호 효과를 측정한 결과 PLME는 세포 사멸을 방지하고, 세포 지질과산화물질(MDA)의 생성을 억제하여 세포내 항산화효소의 활성을 증가시키는 효과를 가지는 것으로 보인다. 이상의 결과로 들깻잎 메탄올추출물은 인체 피부각질 세포에 대한 보호 작용과 in vitro에서의 항산화 능력이 있는 것으로 확인되었다.

Keywords

References

  1. Halliwell B, Gutteridge JM. 1985. The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8: 89-193. https://doi.org/10.1016/0098-2997(85)90001-9
  2. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D. 1987. Oxygen radicals and human disease. Ann Intern Med 107: 526-545. https://doi.org/10.7326/0003-4819-107-4-526
  3. Applegate LA, Noel A, Vile G, Frenk E, Tyrrell RM. 1995. Two genes contribute to different extents to the heme oxygenase enzyme activity measured in cultured human skin fibroblasts and keratinocytes: implications for protection against oxidant stress. Photochem Photobiol 61: 285-291. https://doi.org/10.1111/j.1751-1097.1995.tb03973.x
  4. Fridovich I. 1986. Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
  5. Lee KI, Rhee SH, Kim JO, Chung HY, Park KY. 1999. Anticancer activity of phytol and eicosatrienoic acid identified from perilla leaves. J Korean Soc Food Sci Nutr 28: 1107-1112.
  6. Kim ES, Im KJ. 1977. A study on oxalic acid and calcium content in Korean foods. Korean J Nutr 4: 104-110.
  7. Hyun KW, Kim JH, Song KJ, Lee JB, Jang JH, Kim YS, Lee JS. 2003. Physiological functionality in Geumsan perilla leaves from greenhouse and field cultivation. Korean J Food Sci Technol 35: 975-979.
  8. Kim JY, Kim JS, Jung CS, Jin CB, Ryu JH. 2007. Inhibitory activity of nitric oxide synthase and peroxynitrite scavenging activity of extract of Perilla frutescens. Kor J Pharmacogn 38: 1-24.
  9. Oh SI, Lee MS. 2003. Screening for antioxidative and antimutagenic capacities in 7 common vegetables taken by Korean. J Korean Soc Food Sci Nutr 32: 1344-1350. https://doi.org/10.3746/jkfn.2003.32.8.1344
  10. Jo MJ, Min KJ. 2007. Antimicrobial activity against oral microbes and growth-inhibitory effect of oral tumor cell of extract of Perilla and Mugwort. Korean J Env Hlth 3: 115-122.
  11. Park KY, Lee KI, Rhee SH. 1992. Inhibitory effect of greenyellow vegetables on the mutagenicity in Salmonella assay system and on the growth of AZ-521 human gastric cancer cells. J Korean Soc Food Nutr 21: 149-153.
  12. Kwak CS, Yeo EJ, Moon SC, Kim YW, Ahn HJ, Park SC. 2009. Perilla leaf, Perilla frutescens, induces apoptosis and G1 phase arrest in human leukemia HL-60 cells through the combinations of death receptor-mediated, mitochondrial, and endoplasmic reticulum stress-induced pathways. J Med Food 12: 508-517. https://doi.org/10.1089/jmf.2008.1103
  13. Ueda H, Yamazaki C, Yamazaki M. 2003. Inhibitory effect of perilla leaf extract and luteolin on mouse skin tumor promotion. Biol Pharm Bull 26: 560-563. https://doi.org/10.1248/bpb.26.560
  14. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa J, Nishino H. 2004. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68: 85-90. https://doi.org/10.1271/bbb.68.85
  15. Lee KI, Rhee SH, Kim JO, Chung HY, Park KY. 1993. Antimutagenic and antioxidative effects of perilla leaf extracts. J Korean Soc Food Nutr 22: 175-180.
  16. Saita E, Kishimoto Y, Tani M, Iizuka M, Toyozaki M, Sugihara N, Kondo K. 2012. Antioxidant activities of Perilla frutescens against low-density lipoprotein oxidation in vitro and in human subjects. J Oleo Sci 61: 113-120. https://doi.org/10.5650/jos.61.113
  17. Yamasaki K, Nakano M, Kawahata T, Mori H, Otake T, Ueba N, Oishi I, Inami R, Yamane M, Nakamura M, Murata H, Nakanishi T. 1998. Anti-HIV-1 activity of herbs in Labiatae. Biol Pharm Bull 21: 829-833. https://doi.org/10.1248/bpb.21.829
  18. Okuda T, Hatano T, Agata I, Nishibe S. 1986. The components of tannic activities in Labiatae plants. I. Rosmarinic acid from labiatae plants in Japan. Yakugaku Zasshi 106: 1108-1111. https://doi.org/10.1248/yakushi1947.106.12_1108
  19. Ueda H, Yamazaki C, Yamazaki M. 2002. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull 25: 1197-1202. https://doi.org/10.1248/bpb.25.1197
  20. Ryu JH, Son HJ, Lee SH, Sohn DH. 2002. Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-${\alpha}$ expression in murine macrophage cell line RAW 264.7. Bioorg Med Chem Lett 12: 649-651. https://doi.org/10.1016/S0960-894X(01)00812-5
  21. Park JG, Kramer BS, Steinberg SM, Carmichael J, Collins JM, Minna JD, Gazdar AF. 1987. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium- based colorimetric assay. Cancer Res 47: 5875-5879.
  22. Fraga CG, Leibovitz BE, Tappel AL. 1988. Lipid peroxidation mearsured as thiobarbituric-reactive substance in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biol Med 4: 155-161. https://doi.org/10.1016/0891-5849(88)90023-8
  23. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  24. Nelson DP, Kiesow LA. 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees (with molar extinction coefficients of $H_2O_2$ solutions in the UV). Anal Biochem 49: 474-478. https://doi.org/10.1016/0003-2697(72)90451-4
  25. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  26. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  27. Chung SK, Osawwa T, Kawakishi S. 1997. Hydroxyl radical scavenging effect of spices and scavengers form brown mustard (Brassica nigra). Biosci Biotechnol Biochem 61: 118-123. https://doi.org/10.1271/bbb.61.118
  28. Velioglu YS, Mazza G, Cao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46: 4113-4117. https://doi.org/10.1021/jf9801973
  29. NFRI. 1990. Manuals of quality characteristic analysis for food quality evaluation (2). National Food Research Institute, Skuba, Japan. p 61.
  30. Klein BP, Perry AK. 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J Food Sci 47: 941-945. https://doi.org/10.1111/j.1365-2621.1982.tb12750.x
  31. Park HJ, Kim HJ, Lee JY, Cho BK, Gallo RL, Cho DH. 2007. Adrenocorticotropin hormone stimulates interleukin-18 expression in human HaCaT keratinocytes. J Invest Dermatol 127: 1210-1216. https://doi.org/10.1038/sj.jid.5700703
  32. Yuan J, Murrell GC, Trickett A, Wang M. 2003. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblast. Biochim Biophysica Acta 1641: 35-41. https://doi.org/10.1016/S0167-4889(03)00047-8
  33. Soare JR, Dinis TC, Cunha AP, Almeida LM. 1997. Antioxidant activities of some extracts of Thymus zygis. Free Radical Res 26: 469-478. https://doi.org/10.3109/10715769709084484
  34. Chou HJ, Kuo JT, Lin ES. 2009. Comparative antioxidant properties of water extracts from different parts of beefsteak plant (Perilla frutescens). J Food Drug Anal 17: 489-496.
  35. Giovannini C, Scazzocchio B, Vari R, Santangelo C, D'Archivio M, Masella R. 2007. Apoptosis in cancer and atherosclerosis: polyphenol activities. Ann Ist Super Sanita 43: 406-416.
  36. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. 2006. Targeting multiple signaling pathways by green tea polyphenol(-)-epigallocatechin-3-gallate. Cancer Res 66: 2500-2505. https://doi.org/10.1158/0008-5472.CAN-05-3636
  37. Cushnie TP, Lamb AJ. 2005. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  38. Kim DH, Kim YC, Choi UK. 2011. Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Staphylococus aureus using evolutionary operation factorial design technique. Int J Mol Sci 12: 2395-2407. https://doi.org/10.3390/ijms12042395
  39. Meng L, Lozano YF, Gaydou EM, Li B. 2009. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules 14: 133-140.

Cited by

  1. The Qualitiy Characteristics of Kimchi added Vinegar, Mustard and Leaf Vegetables vol.26, pp.4, 2013, https://doi.org/10.9799/ksfan.2013.26.4.841
  2. Protective Effects of Phellinus linteus and Curry-Added Cooked Mixed Grain Rice Extracts on Oxidative Stress-Induced LLC-PK1 Cell Damage vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1674
  3. Comparison of Biological Activities of Ethanol Extracts of Unripe Fruit of Bitter Melon (Momordica charantia L.) Cultivated in Hamyang, Korea vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1637