DOI QR코드

DOI QR Code

The Effects of Extraction Conditions on the Antioxidative Effects of Extracts from Campbell Early and Muscat Bailey A Grapevine Leaves

추출조건에 따른 캠벨얼리와 Muscat Bailey A 포도잎 추출물의 항산화 효과

  • Choi, Soo-Kyong (Dept. of Food and Nutrition, Yeungnam University) ;
  • Yu, Qi-Ming (Dept. of Food and Nutrition, Yeungnam University) ;
  • Lim, Eun-Ji (Dept. of Food and Nutrition, Yeungnam University) ;
  • Seo, Jung-Sook (Dept. of Food and Nutrition, Yeungnam University)
  • 최수경 (영남대학교 식품영양학과) ;
  • 여계명 (영남대학교 식품영양학과) ;
  • 임은지 (영남대학교 식품영양학과) ;
  • 서정숙 (영남대학교 식품영양학과)
  • Received : 2012.09.21
  • Accepted : 2013.02.04
  • Published : 2013.02.28

Abstract

We investigated the physiological activities of extracts from Campbell Early and Muscat Bailey A (MBA) grapevine leaves. Total phenol and flavonoid contents were highest in ethanol extracts from MBA grapevine leaves compared to extracts from Campbell Early grapevine leaves. Specific polyphenols higher in ethanol extracts from MBA grapevine leaves include gallic acid, epicatechin, caffeic acid, naringin, and resveratrol. Resveratrol content from MBA grapevine leaves increased when extracted for more than two hours in ethanol and water. The hydroxyl radical scavenging ability of ethanol extracts was higher than the water extract from both strains of grapevine leaves. DPPH and total antioxidants were highest in ethanol extracts from MBA grapevine leaves among the other extracts. Therefore, these results suggest that ethanol extracts from MBA grapevine leaves are a highly valuable resource for the development of natural functional foods.

본 연구에서는 포도잎을 기능성식품 소재로 활용하고자 캠벨얼리와 MBA 포도잎 추출물의 생리활성 성분을 분석하였다. 또한 추출 시간에 따른 생리활성의 변화를 확인하여 포도잎의 최적 추출조건을 확인하고자 하였다. 총 페놀 함량 및 플라보노이드 함량은 MBA 포도잎이 캠벨얼리 포도잎에 비해 높은 함량을 보였으며 에탄올 추출물에서 열수 추출물에 비해 높게 나타났다. 캠벨얼리 열수 추출물을 제외하고는 모든 추출물에서 2시간 이상 추출 시 이전 추출에 비해 총 페놀 및 플라보노이드 함량이 높게 나타났다. 폴리페놀 5종(gallic acid, epicatechin, caffeic acid, naringin, resveratrol)을 분석한 결과, MBA 포도잎 에탄올 추출물이 가장 높게 나타났다. Resveratrol 함량은 MBA의 경우 에탄올과 열수 추출물 모두 2시간 이상 추출 시 이전 추출에 비해 높은 함량을 보였다. Hydroxyl radical 소거능은 열수 추출물에 비해 에탄올 추출물이 높은 소거능을 보였으며, 전자공여능은 MBA 에탄올 추출물이 가장 높은 활성을 나타내었다. 총 항산화능도 MBA 에탄올 추출물에서 높은 활성을 보였다. 본 연구 결과 MBA 포도잎 추출물이 캠벨얼리 포도잎 추출물에 비해 높은 항산화 활성을 보였으며, 열수 추출물에 비해 에탄올 추출물이 높은 항산화능을 나타내었다. 또한 추출시간을 2시간 이상으로 하였을 때 생리활성 성분의 함량이 높은 것으로 확인되었다. 이상의 결과로 볼 때 포도잎의 생리활성 연구에서 캠벨얼리보다는 MBA 품종의 생리활성이 대체로 우수하였고 열수 추출물에 비해 에탄올 추출물을 이용할 경우 생리활성 성분을 높이는데 도움이 될 것으로 생각된다. 그러나 실제로 포도잎 가공품 개발 시에는 관능 특성 등 다양한 가공 조건에 대한 추후 연구가 필요할 것으로 여겨진다.

Keywords

References

  1. Kang JH, Kim KA, Han JS. 2004. Korean diet and obesity. J Korean Soc Study Obes 13: 34-41.
  2. Jeong HS, Song YM, Lee KS. 2007. Aging and health care expenditure. Korean J Health Econ Policy 13: 95-116.
  3. Iacopini P, Baldi M, Storchi P, Sebastiani L. 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compos Anal 21: 589-598. https://doi.org/10.1016/j.jfca.2008.03.011
  4. Dercks W, Creasy LL. 1989. The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34: 189-202. https://doi.org/10.1016/0885-5765(89)90043-X
  5. O'Byme DJ, Devaraj S, Grundy SM, Jialal I. 2002. Comparison of the antioxidant effects of Concord grape juice flavonoids and ${\alpha}$-tocopherol on markers of oxidative stress in the healthy adults. Am J Clin Nutr 76: 1367-1374.
  6. Aggarwal BB, Chanda M, Shishodia S. 2006. Sources and chemistry of resveratrol. In Resveratrol in Health and Disease. Aggarwal BB, Shishodia S, eds. CRC Press, New York, NY, USA. p 17-32.
  7. Bishayee A. 2009. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2: 409-418. https://doi.org/10.1158/1940-6207.CAPR-08-0160
  8. Bai Y, Mao QQ, Qin J, Zheng XY, Wang YB, Yang K, Shen HF, Xie LP. 2010. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci 101: 488-493. https://doi.org/10.1111/j.1349-7006.2009.01415.x
  9. Lee SM, Yang H, Tartar DM, Gao B, Luo X, Ye SQ, Zaghouani H, Fang D. 2011. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia 54: 1136-1146. https://doi.org/10.1007/s00125-011-2064-1
  10. Azorin-Ortuno M, Yanez-Gascon MJ, Pallares FJ, Rivera J, Gonzalez-Sarrias A, Larrosa M, Vallejo F, Garcia-Conesa MT, Tomas-Barberan F, Espín JC. 2012. A dietary resveratrol-rich grape extract prevents the developing of atherosclerotic lesions in the aorta of pigs fed an atherogenic diet. J Agric Food Chem 60: 5609-5620. https://doi.org/10.1021/jf301154q
  11. Kennedy A, Overman A, Lapoint K, Hopkins R, West T, Chuang CC, Martinez K, Bell D, McIntosh M. 2009. Conjugated linoleic acid-mediated inflammation and insulin resistance in human adipocytes are attenuated by resveratrol. J Lipid Res 50: 225-232. https://doi.org/10.1194/jlr.M800258-JLR200
  12. Baxter RA. 2008. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J Cosmet Dermatol 7: 2-7. https://doi.org/10.1111/j.1473-2165.2008.00354.x
  13. Cho CH, Kim SY, Yoo GJ, Son MH, Park KH, Lim BL, Kim DC, Chae HJ. 2008. Resveratrol extraction from grape fruit stem and its antioxidant activity. J Korean Soc Appl Biol Chem 51: 11-16.
  14. Lee NR, Choi SJ. 2009. Content of resveratrol in different parts of various grape cultivars. Korean J Food Preserv 16: 959-964.
  15. Chang SW, Shin NS, Song JH, Kim HJ, Lee KY, Rho YT. 2009. Production of high-level polyphenol powders from young grape leaves. Korean J Food Preserv 16: 714-718.
  16. Simopoulos AP. 2004. The traditional diet of Greece and cancer. Eur J Cancer Prev 13: 219-230. https://doi.org/10.1097/01.cej.0000130011.99148.07
  17. Yusuke O, Kyohei T, Hirosane I. 2006. Composition for bleaching food. JP 18296394.
  18. Yoshihide H. 2009. Grape-leaves tea and method for producing the same. JP 21165410.
  19. Korea Agro-Fisheries & Food Trade Corporation. 2011. Grape. In Agricultural Products Consumption Actual Condition. Seoul, Korea. Vol 2, p 655-666.
  20. Singleton VL, Rossi Jr JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  21. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  22. Taware PB, Dhumal KN, Oulkar DP, Patil SH, Banerjee K. 2010. Phenolic alterations in grape leaves, berries and wines due to foliar and cluster powdery mildew infections. Int J Pharma Bio Sci 1: 1-14.
  23. Gutteridge JM. 1984. Reactivity of hydroxyl and hydroxyl- like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. Biochem J 224: 761-767. https://doi.org/10.1042/bj2240761
  24. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  26. Lee J, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J Food Sci Techol 26: 317-323.
  27. Ahn MS, Kim HJ, Seo MS. 2007. A study on the antioxidative and antimicrobial activities of the citrus Unshju peel extracts. Korean J Food Culture 22: 454-461.
  28. Oh YS, Lee JH, Yoon SH, Oh CH, Choi DS, Choe E, Jung MY. 2008. Characterization and quantification of anthocyanins in grape juices obtained from the grapes cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. J Food Sci 73: C378-C389.
  29. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  30. Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139: 652-663. https://doi.org/10.1104/pp.105.064238
  31. Ahn JB. 2006. Development of red wine containing high level of trans-resvertrol with domestic grape. Food Engineering Progress 10: 226-232.
  32. Wang W, Tang K, Yang HR, Wen PF, Zhang P, Wang HL, Huang WD. 2010. Distribution of resveratrol and stilbene synthase in young grape plant (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem 48: 142-152. https://doi.org/10.1016/j.plaphy.2009.12.002
  33. Choi SY, Lee Y, Lee P, Kim KT. 2011. Comparison of the antioxidative effects and content of anthocyanin and phenolic compounds in different varieties of Vitis vinifera ethanol extract. J Food Sci Nutr 16: 24-28. https://doi.org/10.3746/jfn.2011.16.1.024
  34. Lee OS, Moon SW, Kim EJ, Kang BS. 2008. Studies on physicochemical and sensory characteristics of new grape leaves tea by roasting treatment. Int J Integrative Alter Med 4: 17-24.
  35. Delmas D, Jannin B, Latruffe N. 2005. Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49: 377-395. https://doi.org/10.1002/mnfr.200400098
  36. Su HC, Hung LM, Chen JK. 2006. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin- induced diabetic rats. Am J Physiol Endocrinol Metab 290: E1339-E1346. https://doi.org/10.1152/ajpendo.00487.2005
  37. Zhang XH, Choi SK, Seo JS. 2009. Effect of dietary grape pomace on lipid oxidation and related enzyme activities in rats fed high fat diet. Korean J Nutr 42: 415-422. https://doi.org/10.4163/kjn.2009.42.5.415
  38. Lee SJ, Choi SK, Seo JS. 2009. Grape skin improves antioxidant capacity in rats fed a high fat diet. Nutr Res Pract 3: 279-285. https://doi.org/10.4162/nrp.2009.3.4.279
  39. Pari L, Suresh A. 2008. Effect of grape (Vitis vinifera L.) leaves extract on alcohol induced oxidative stress in rats. Food Chem Toxicol 46: 1627-1634. https://doi.org/10.1016/j.fct.2008.01.003
  40. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984.

Cited by

  1. Optimal Extraction Conditions to Produce Rosemary Extracts with Higher Phenolic Content and Antioxidant Activity vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.501
  2. Correlation between Antioxidant Capacities and Color Values in Korean Red Grape Juices vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1206
  3. Phenolic Contents of Different Parts of Rhus verniciflua Stokes according to Extraction Conditions vol.44, pp.1, 2015, https://doi.org/10.3746/jkfn.2015.44.1.097
  4. Quality characteristics and antioxidant effects of grape juice obtained with different extraction methods vol.20, pp.6, 2013, https://doi.org/10.11002/kjfp.2013.20.6.784
  5. Antioxidant Activities of Ethanol Extracts from Different Parts of the Black Raspberry (Rubus occidentalis) Obtained Using Ultra-sonication vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.504