DOI QR코드

DOI QR Code

Effect of Different Light Emitting Diode (LED) Lights on the Growth Characteristics and the Phytochemical Production of Strawberry Fruits during Cultivation

파장별 LED광이 딸기의 생장 특성과 생리 활성 물질 형성에 미치는 효과

  • Choi, Hyo Gil (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, Joon Kook (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Moon, Byoung Yong (Department of Biological Sciences, Inje University) ;
  • Kang, Nam Jun (Department of Horticulture, Gyeongsang National University) ;
  • Park, Kyoung Sub (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cho, Myeong Whan (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Young Cheol (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 최효길 (국립원예특작과학원 시설원예시험장) ;
  • 권준국 (국립원예특작과학원 시설원예시험장) ;
  • 문병용 (인제대학교 생명과학부) ;
  • 강남준 (경상대학교 원예학과) ;
  • 박경섭 (국립원예특작과학원 시설원예시험장) ;
  • 조명환 (국립원예특작과학원 시설원예시험장) ;
  • 김영철 (국립원예특작과학원 시설원예시험장)
  • Received : 2012.05.24
  • Accepted : 2012.10.31
  • Published : 2013.02.28

Abstract

Recent unusual weather due to global warming causes shortage of daily sunlight and constitutes one of the primary reasons for agricultural damages. LED light sources are frequently utilized to compensate for the shortage of sunlight in greenhouse agriculture. The present study is aimed at evaluating formations of phytochemicals as well as growth characteristics of mature strawberry fruits ('Daewang' cultivar) during cultivation in a closed growth chamber equipped with artificial LED light as a sole light source. Each LED light of blue (448 nm), red (634 and 661 nm) or mixed blue plus red (blue:red = 3:7) was separately supplied and the intensity of each light was adjusted to $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at plant level with a photoperiod consisted of 16 hours light and 8 hours darkness. Strawberries grown under mixed LED light of blue and red wavelengths showed a higher production of fruits than those grown under other LED treatments. Fructose, one of the free sugars, increased in mixed LED light-grown fruits. Anthocyanin contents were elevated remarkably in the mixed LED light-grown fruits compared with those in other LED treatments. Contrastingly, contents of total phenolics and flavonoids were not of much different from one another among the fruits treated with various LED lights. On the other hand, ripening of strawberry fruits was found to be faster when grown under blue LED light compared with other LED treatments. Moreover, antioxidant activities of blue or red LED light-grown fruits, respectively, were significantly higher than those of mixed LED light-grown fruits. We suggest that when daylight is in shortage during cultivation in a greenhouse, supplementation of sunlight with LED light, which is composed of blue and red wavelengths, could be useful for the enhancement of productivity as well as of free sugar content in strawberry fruits. In addition, for the strawberry culture in the plant factory, selective adoption of LED light wavelength would be required to accomplish the purpose of controlling fruit maturation time as well as of enhancing contents of sugars and antioxidants of fruits.

지구 온난화에 따른 최근의 이상기후는 일조량의 부족을 야기하여 농업 피해의 일차적인 요인이 되고 있다. 플라스틱 하우스 재배에서 LED광은 일조량 부족을 보충하기 위해 종종 활용되고 있다. 본 연구는 LED 인공광원을 이용한 폐쇄형 생장실에서 생육 중인 성숙한 딸기 '대왕' 품종 과실의 생장 특성 및 기능성 식물화합물 형성을 조사하는데 목적이 있다. 인공광원으로는 청색 LED광(448nm), 적색 LED광(634nm 및 661nm), 그리고 청색과 적색이 3대 7로 조합된 혼합 LED광을 사용하였으며, 태양광이 없는 폐쇄형 생장상에서 주간 16시간 및 야간 8시간의 광주기와 함께 $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 광도로 LED광을 처리하였다. 청색과 적색 파장이 혼합된 LED광에서 자란 딸기 과실의 생산량이 다른 LED광 처리보다 높았다. 유리당 중의 하나인 과당은 혼합 LED광에서 증가되었다. 안토시아닌 함량 역시 다른 LED광 처리에 비하여 혼합 LED광에서 현저하게 증가되었다. 총 페놀화합물과 플라보노이드 함량은 LED광 처리별 유의적 차이가 없었다. 반면, 청색 LED광에서 자란 딸기 과실은 다른 LED광처리에 비하여 빨리 익었다. 적색이나 청색의 LED광에서 생육한 과실의 항산화 활성이 혼합 LED광보다 유의적으로 높게 나타났다. 따라서 온실에서의 딸기 생육 시 부족한 태양광의 보충광원으로서 청색과 적색의 혼합 LED광을 사용하면 과실의 생산량과 유리당 함량의 증진에 유용하리라고 판단되며, 식물공장에서 딸기 재배 시 성숙시기의 조절이나 당 함량 및 항산화제 증진과 같은 목적을 실현하기 위해서 LED 파장의 선택적 이용이 필요할 것으로 생각된다.

Keywords

References

  1. Andersen, O.M., T. Fossen, K. Torskangerpoll, A. Fossen, and U. Hauge. 2004. Anthocyanin from strawberry (Fragaria ananassa) with the novel aglycone, 5-carboxypyranopelargonidin. Phytochemistry 65:405-410. https://doi.org/10.1016/j.phytochem.2003.10.014
  2. Azad, M.O.K., I.J. Chun, J.H. Jeong, S.T. Kwon, and J.M. Hwang. 2011. Response of the growth characteristics and phytochemical contents of pepper (Capsicum annuum L.) seedling with supplemental LED light in glass house. J. Bio- Environ. Con. 23:182-188.
  3. Benson, E.E., P.T. Lynch, and J. Jones. 1992. Variation in free-radical damage in rice cell suspensions with different embryogenic potentials. Planta 188:296-305.
  4. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 81:1199-1200.
  5. Brown, C.S., A.C. Schuerger, and J.C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
  6. Cheel, J., C. Theoduloz, J.A. Rodriguez, P.D.S. Caligari, and G. Schmeda-Hirschmann. 2007. Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. ${\times}$ ananassa cv. Cehandler. Food Chem. 102:36-44. https://doi.org/10.1016/j.foodchem.2006.04.036
  7. Duong, T.N., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue Organ Cult. 73:43-52. https://doi.org/10.1023/A:1022638508007
  8. Ebisawa, M., K. Shoji, M. Kato, K. Shimomura, F. Goto, and T. Yoshihara. 2008. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa. L.). Environ. Control Biol. 46:1-11.
  9. Fan, L., C. Dube, C. Fang, D. Roussel, M.T. Charles, Y. Desjardins, and S. Khanizadeh. 2012. Effect of production systems on phenolic composition and oxygen radical absorbance capacity of 'Orleans' strawberry. LWT - Food Sci. Technol. 45:241-245. https://doi.org/10.1016/j.lwt.2011.09.004
  10. Folta, K.M. and K.S. Childers. 2008. Light as a growth regulator: Controlling plant biology with narrow band width solid-state lighting systems. HortScience 43:1957-1964.
  11. Gil, M.I., D.M. Holcroft, and A.A Kader. 1997. Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J. Agric. Food Chem. 45:1662-1667. https://doi.org/10.1021/jf960675e
  12. Gill, S.S. and N. Tureja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  13. Hernandez, I., L. Alegre, F. Van Breusegem, and S. Munne-Bosch. 2009. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 14:125-132. https://doi.org/10.1016/j.tplants.2008.12.003
  14. Johkan, M., K. Shoji, F. Goto, S.N. Hashiad, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
  15. Johkan, M., K. Shoji, F. Goto, S. Hahiad, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75:128-133. https://doi.org/10.1016/j.envexpbot.2011.08.010
  16. Kim, S.K., R.N. Bae, and C.H. Chun. 2011. Changes in bioactive compounds contents of 'Maehyang' and 'Seolhyang' strawberry fruits by UV light illumination. Kor. J. Hort. Sci. Technol. 29:172-180.
  17. Kim, Y.H., and M. Hamayun, A.L. Khan, C.I. Na, S.M. Kang, H.H. Han, and I.J. Lee. 2009. Exogenous application of plant growth regulators increased the total flavonoid content in Taraxacum officinale Wigg. African J. Biotechnol. 8:5727-5732.
  18. Meyers, K.J., C.B. Watkins, M.P. Pritts, and R.H. Liu. 2003. Antioidant and antiproliferative activities of strawberries. J. Agri. Food Chem. 51:6887-6892. https://doi.org/10.1021/jf034506n
  19. Moing, A., C. Renaud, M. Gaudillĕre, P. Raymond, P. Roudeillac, and B. Denoyes-Rothan. 2001. Biochemical changes during fruit development of four strawberry cultivars. J. Amer. Soc. Hort. Sci. 126:394-403.
  20. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C.R. Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Samuoliene, G., R. Sirtautas, A. Brazaityte, and P. Duchovskis. 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134:1494-1499. https://doi.org/10.1016/j.foodchem.2012.03.061
  22. Slinkard, K. and V.L. Singleton. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28:49-55.
  23. Treutter, D. 2010. Managing phenol contents in crop plants by phytochemical farming and breeding visions and constraints. Int. J. Mol. Sci. 11:807-857. https://doi.org/10.3390/ijms11030807
  24. Wang, S.Y. and W. Zheng. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49:4977-4982. https://doi.org/10.1021/jf0106244
  25. Wang, S.Y. and P. Millner. 2009. Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria ${\times}$ ananassa Duch.). J. Agric. Food Chem. 57:9651-9657. https://doi.org/10.1021/jf9020575
  26. Wang, S.Y., C.T. Chen, and C.Y. Wang. 2009. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 112:676-684. https://doi.org/10.1016/j.foodchem.2008.06.032
  27. Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101:1753-1758. https://doi.org/10.1016/j.foodchem.2006.02.010
  28. Zhang, Y., N.P. Seeram, R. Lee, L. Feng, and D. Heber. 2008. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. 56:670-675. https://doi.org/10.1021/jf071989c
  29. Zheng, Y., S.Y. Wang, C.Y. Wang, and W. Zheng. 2007. Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT - Food Sci. Technol. 40:49-57. https://doi.org/10.1016/j.lwt.2005.08.013

Cited by

  1. Sterilization Analysis of Harmful Microbes in LED Plant Factory using UV LED vol.28, pp.6, 2014, https://doi.org/10.5207/JIEIE.2014.28.6.015
  2. Targeted use of LEDs in improvement of production efficiency through phytochemical enrichment vol.97, pp.15, 2017, https://doi.org/10.1002/jsfa.8492
  3. Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System vol.27, pp.3, 2018, https://doi.org/10.12791/KSBEC.2018.27.3.199
  4. 파장별 LED 광이 버섯파리의 유인에 미치는 영향 vol.12, pp.4, 2014, https://doi.org/10.14480/jm.2014.12.4.375
  5. 저장 중 발광다이오드 광 조사가 타이로시네이스 활성에 미치는 영향 vol.47, pp.6, 2013, https://doi.org/10.9721/kjfst.2015.47.6.785
  6. 야간 적색 LED 처리가 'Fuji'/M.26 사과나무의 광합성, 영양생장 및 과실 품질에 미치는 영향 vol.25, pp.1, 2013, https://doi.org/10.12791/ksbec.2016.25.1.57
  7. 피복물 종류에 따른 더덕의 생육 및 항산화 물질 비교 vol.24, pp.3, 2016, https://doi.org/10.7783/kjmcs.2016.24.3.183
  8. 살리실 산 처리가 딸기 생육과 과실 품질에 미치는 영향 vol.52, pp.5, 2013, https://doi.org/10.14397/jals.2018.52.5.11
  9. Supplementary Light Source Affects Growth, Metabolism, and Physiology ofAdenophora triphylla(Thunb.) A.DC. Seedlings vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6283989
  10. LED 보광이 딸기 두 품종의 성숙도에 따른 과실 품질에 미치는 영향 vol.28, pp.4, 2013, https://doi.org/10.12791/ksbec.2019.28.4.302
  11. Characteristics of Leaf Temperature in Greenhouse Strawberry based on Light Intensity and Relative Humidity vol.54, pp.1, 2020, https://doi.org/10.14397/jals.2020.54.1.91