DOI QR코드

DOI QR Code

Establishment of Optimal Fermentation Conditions for Steam-dried Ginseng Berry via Friendly Bacteria and Its Antioxidant Activities

생체친화성 균주에 의한 인삼열매증포 추출물의 최적발효조건 및 항산화활성

  • Kim, Seung Tae (Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University) ;
  • Kim, Hee Jung (Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University) ;
  • Jang, Su Kil (Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University) ;
  • Lee, Do Ik (Department of Immunology, College of Pharmacy, Chung-Ang University) ;
  • Joo, Seong Soo (Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University)
  • 김승태 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 김희정 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 장수길 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 이도익 (중앙대학교 약학대학 면역질환연구실) ;
  • 주성수 (강릉원주대학교 생명과학대학 생물의약신소재연구실)
  • Received : 2012.10.16
  • Accepted : 2013.01.16
  • Published : 2013.02.28

Abstract

In this study, we observed optimal conditions and suitable bacteria for the fermentation of steam-dried ginseng berry extracts (SGB) and determined antioxidant effects of the fermented extracts. Five bacteria (Lactobacillus fermentarum, L. plantarum, L. brevis, L. casei, Bacillus subtillis) were examined on their growth activities and viabilities in various culture temperatures ($25-35^{\circ}C$) and concentrations (25-100%). L. plantarum was considered to be the most suitable bacteria for the fermentation in both growth activity and viability. Moreover, the extracts fermented with L. plantarum showed more potent antioxidant efficacy in both 1,1-diphenyl-2-picrylhydrazyl radical and hydroxyl radical scavenging assay. High performance liquid chromatography analysis revealed that fermentation with L. plantarum changed the contents and components of ginsenosides. In conclusion, these data suggest that L. plantarum efficiently ferment SGB and the fermented extracts may have therapeutical values against oxidative stress and be a good candidate in adjuvant therapy where ginsenoside would be the main composition.

본 연구에서는 인삼의 뿌리보다 활성성분의 함량 및 종류가 많은 것으로 알려지고 있는 인삼열매를 7증7포 증숙처리 후 확보한 열수추출물에 대한 발효에 적합한 발효균주의 선발과 발효의 조건을 탐색하여 효능이 개선된 기능성소재로서의 가능성을 확인하고자 하였다. 연구결과 5종의 생체친화형 세균(L. fermentarum, L. plantarum, L. brevis, L. casei, B. subtillis) 중 L. plantarum에서 우수한 발효능이 있는 것으로 확인하였으며, 특히 L. plantarum 으로 증포인삼열매 추출물을 발효 시 효과적인 항산화활성이 관찰되었다. 더욱이, L. plantarum으로 발효 시 인삼의 중요 활성성분인 진세노사이드의 함량 및 성분의 변화가 관찰되었고 비발효시 관찰되지 않았던 높은 수준의 Rg3를 포함한 Rh1, Rg2, Rd, 및 Rh2가 관찰되어 발효물의 약리학적 적용도 가능할 것으로 사료된다. 이와 같은 결과를 토대로, 증포인삼열매추출물은 L. plantarum에 의해 효과적으로 발효가 되며, 발효 후 나타나는 항산화활성 및 진세노사이드의 성분/함량의 변화가 치료적 수준에 적합한 후보물질로의 개발이 가능 할 것으로 판단된다.

Keywords

References

  1. Wang CZ, Yuan CS. Potential role of ginseng in the treatment of colorectal cancer. Am. J. Chin. Med. 36: 1019-1028 (2008) https://doi.org/10.1142/S0192415X08006545
  2. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 29: 1109-1118 (2008) https://doi.org/10.1111/j.1745-7254.2008.00869.x
  3. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51: 1851-1858 (2002) https://doi.org/10.2337/diabetes.51.6.1851
  4. Popovich DG, Kitts DD. Generation of ginsenosides Rg3 and Rh2 from American ginseng. Phytochemistry 65: 337-344 (2004) https://doi.org/10.1016/j.phytochem.2003.11.020
  5. Wang HC, Chen CR, Chang CJ. Carbon dioxide extraction of ginseng root hair oil and ginsenosides. Food Chem. 72: 505-509 (2001) https://doi.org/10.1016/S0308-8146(00)00259-4
  6. Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, Polonsky KS, Yuan CS. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicince 9: 254-258 (2002) https://doi.org/10.1078/0944-7113-00106
  7. Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS. Antihyperglycemic effects of ginseng: Comparison between root and berry. Phytomedicince 10: 600-605 (2003) https://doi.org/10.1078/094471103322331908
  8. Xie JT, Du GJ, McEntee E, Aung HH, He H, Mehendale SR, Wang CZ, Yuan CS. Effects of triterpenoid glycosides from fresh ginseng berry on SW480 human colorectal cancer cell line. Cancer Res. Treat. 43: 49-55 (2011) https://doi.org/10.4143/crt.2011.43.1.49
  9. Kim KY, Shin JK, Lee SW, Yoon SR, Chung HS, Jeong YJ, Choi MS, Lee CM, Moon KD, Kown JH. Quality and functional preparation of red ginseng prepared with different steaming time and drying methods. Korean J. Food Sci. Technol. 39: 494-499 (2007)
  10. Rho SS, Park JH. The effects of ginseng radix preparata extract on anti-thrombotic activity. J. East West Med. 2: 47-61 (2008)
  11. Wang CZ, Zhang Bin, Song WX, Wang A, Ni M, Luo X, Aung HH, Xie JT, Tong R, He TC, Yuan CS. Steamed American ginseng berry: Ginsenoside analysis and anticancer activities. J. Agric. Food Chem. 54: 9936-9942 (2006) https://doi.org/10.1021/jf062467k
  12. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12: 413-420 (1995) https://doi.org/10.1023/A:1016212804288
  13. Ando T, Tanaka O, Shibata S. Preparation of anti-lipolytic substance from Panax ginseng. Planta Med. 38: 18-23 (1980) https://doi.org/10.1055/s-2008-1074832
  14. Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Hydrogen peroxide-mediated degradation of protein: Different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. Biochem. Biophys. Acta 1337: 319-326 (1997) https://doi.org/10.1016/S0167-4838(96)00180-X
  15. Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: Comparative effects of melatonin and other antioxidants. Biochem. Biophys. Acta 1620: 139-150 (2003) https://doi.org/10.1016/S0304-4165(02)00527-5
  16. Tohno M, Kobayashi H, Tajima K, Uegaki R. Strain-dependent effects of inoculation of Lactobacillus plantarum subsp. plantarum on fermentation quality of paddy rice (Oryza sativa L. subsp. japonica) silage. FEMS Microbiol. Lett. 337: 112-119 (2012) https://doi.org/10.1111/1574-6968.12014
  17. Kubo Y, Rooney AP, Tsukakoshi Y, Nakagawa R, Hasegawa H, Kimura K. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Appl. Environ. Microb. 77: 6463-6469 (2011) https://doi.org/10.1128/AEM.00448-11
  18. Shao ZH, Xie JT, Vanden Hoek TL, Mehendale S, Aung H, Li CQ, Qin Y, Schumacker PT, Becker LB, Yuan CS. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim. Biophys. Acta 1670: 165-171 (2004) https://doi.org/10.1016/j.bbagen.2003.12.001
  19. Kim ST, Kim HB, Lee KH, Choi YR, Kim HJ, Shin IS, Gyoung YS, Joo SS. Steam-dried ginseng berry fermented with Lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. J. Agric. Food Chem. 60: 5438-5445 (2012) https://doi.org/10.1021/jf300460g
  20. Attele AS, Wu JA, Yuan CS. Multiple pharmacological effects of ginseng. Biochem. Pharmacol. 58: 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9

Cited by

  1. Changes in the ginsenoside content during the fermentation process using microbial strains vol.39, pp.4, 2015, https://doi.org/10.1016/j.jgr.2015.05.005
  2. Anti-inflammatory Activity of Solvent Fractions from Ginseng Berry Extract in LPS-Induced RAW264.7 Cells vol.22, pp.6, 2014, https://doi.org/10.7783/KJMCS.2014.22.6.449