Research on Image Quality and Effective dose by Exposure Index Variation

Hyun Soo Kim^{*}, Jae Ho Jeong^{**,****}, Jong Woong Lee^{***,****}

Dept. of Radiological Technology, Shingu College*, Dept. of Radiology, Kyung Hee Medical Center**, Dept. of Radiology, Kyung Hee University Hospital at Gang-dong***, 3D Display Research Center, Dept. of Electronic Engineering, Kwangwoon University****

Exposure Index변화에 따른 Image Quality와 Effective dose 에 대한 연구: a Monte Carlo Simulation Study

김현수*, 정재호**,****, 이종웅***,****

신구대학교 방사선과*, 경희의료원**, 강동경희대병원***, 광운대학교 전자공학과****

Abstract

Comparing with film-screen system, flat-panel detector has extensive dynamic range. Focusing flat-panel detector, whole body human phantom PBU-50 (Kyoto, kagaku, Japan) was used to perform comparative study of the estimate of image quality and exposure dose. the exposure condition was 81kV and 20mAs, which is used for Abdomen supine exam in clinical area. As a result of the kV change of the interpreted medical image which has over 30dB of PSNR value, the value of DAP shows the difference of 19.6 times. Moreover, the result of comparing kV change with effective dose of ICRP 103 shows that stochastic effect was increased by over exposure. Therefore, it is significantly necessary that digital radiation technical chart will be used to obtain high quality image and make the standard of dose by educating radio-technologist continually.

Key Words : Exposure Index, Dynamic rang, Effective dose, PSNR, Monte Carlo technique

요약

평판 검출기(flat-panel detector)는 필름-스크린 시스템과 비교하여 넓은 범위의 노출지수(dynamic range)를 갖 게 된다. 평판 검출기를 대상으로 임상에서 일반적으로 사용하고 있는 Abdomen supine 노출 조건인 81kV에 20mAs 를 기준으로 전신형 팬텀 whole body human phantom PBU-50 (Kyoto, kagaku, Japan)을 모의 환자로 화질평가와 피폭선량측면에서 비교 연구하였다. PSNR값이 30dB이상으로 판독 가능한 영상의 kV변화에 따른 DAP값은 약 19.6배 차이를 나타냈다. 또한 kV변화에 따른 유효선량을 ICRP 103을 기준으로 비교한 결과 방사선에 의한 확률적 영향이 증 가함을 알 수 있었다. 방사선검사자의 지속적인 교육 및 지도를 통한 우리나라에 맞는 디지털 방사선 Technical chart 를 마련하여 양질의 영상과 환자피폭선량에 대한 기준 선량을 마련해야 할 것이다.

중심단어: 노출지수, 역동범위, 유효선량, PSNR, 몬테카를로 시뮬레이션

63

Ⅰ. 서론

우리에게 노출되는 전체 방사선 중 자연방사선은 약 85%정도이다. 나머지 대부분은 X-ray 검사 등 의료 방사선에 의해 피폭되어 지고 있다. 의료기관에서 방 사선을 이용한 영상의학 검사는 행위에 대한 정당성 을 확보하여 의료분야에 사용하고 있다. 또한 국제방 사선방어위원회(ICRP:International Commission on Radiological Protection)에서 권고하는 ALARA (As Low As Reasonably Achievable) 개념에 따라 최적의 영상을 얻으면서 환자가 받는 선량을 최소화 하도록 권고하 고 있다.[1] 환자가 받는 방사선량은 검사부위 및 의료 기관, 국가마다 차이가 있으며, UN방사선영향과학위 원회(UNSCEAR:United Nations Scientific Committee on the Effects of Atomic Radiation) 2000 보고서에 따르면 유럽연합(EC)이나 OECD 국가의 경우 동일한 영상의 학 검사를 받았다 하더라도 환자가 받는 선량은 의료 기관에 따라 10~20배의 큰 차이를 나타내고 있다.^[2] 동일 검사에 대해 의료기관에 따른 선량의 차이는 아 날로그 방사선장비에 비해 넓은 노출지수 때문에 가 능하다. 또한 평판 검출기(flat-panel detector)의 넓은 노 출지수 는 bone과 soft tissue와 같이 physical contrast가 차가 큰 조직도 한 화면에 표시할 수 있는 장점이 있 다^[3]. 평판 검출기는 104단계의 grayscale을 가지고 인간 눈과 비슷한 노출지수를 가지는 필름-스크린 시스템은 대략 101.5단계의 grayscale을 가진다. 따라서 평판 검출 기는 필름-스크린 시스템에 비교하여 넓은 범위의 영 상 노출 허용도를 갖게 된다. 즉 평판 검출기의 폭넓 은 노출지수로 인하여 영상의 화질 저하 없이 과소피 폭이나 과다피폭이 발생할 수 있다. 이는 window level 과 window width의 조절을 통해 전체의 노출지수 중에 인간의 눈이 인식 가능한 부분을 시각화 할 수 있기 때문이다. 이러한 평판 검출기의 장점인 폭넓은 노출 지수는 직관적으로 보이는 영상을 양질로 유지하고자 하는 욕구에 의해 필요 이상 높은 피폭을 유지하려는 현상이 발생하게 된다. 디지털 방사선 영상은 진단 성 능의 어떠한 감소도 없이 30~50%의 선량 감소를 이룰 수 있지만 이러한 dose creep 현상에 의해 필름/스크린 시스템에 비해 상대적으로 환자 피폭선량은 줄어들고 있지 않다^[4]. 평판 검출기의 디지털 영상은 필름/스크

린 시스템과 달리 넓은 노출지수로 인하여 시각적으 로 피폭 선량의 과소를 평가하기 어렵기 때문이다. 본 연구에서는 평판 검출기를 대상으로 피폭선량에 따른 정량적인 화질평가를 위해 Image I를 이용하여 방사선 선량에 따른 영상의 PSNR을 비교 연구하였다. 일반적 으로 PSNR이 30dB 이상이면 임상적으로 영상의 질적 차이를 구분할 수 없고, PSNR이 높을수록 영상의 질 이 좋게 평가 된다^[5]. 평판 검출기에 있어 PSNR을 기 준으로 30dB이상인 영상을 기준으로 EI(Exposure Index)와 DAP값을 도출하였다. 피폭 선량 측면은 PSNR값이 30dB 이상인 화질의 엑스선 선질 변화를 SRS-78 프로그램으로 시뮬레이션하고 선행실험에서 도출된 DAP(Dose Area Product)를 조사하여 PCXMC 2.0 Monte Carlo 전산모사를 통하여 유효선량을 시뮬레 이션 하고 risk factor를 비교하고 평가하여 판독 가능 한 최적의 검사조건을 도출해 보고자 한다.

Ⅱ. 실험 및 방법

1. Digital Imaging System and acquisition

본 연구를 진행하기 위해서 간접변환방식의 비정질 실리콘(a-Si)을 기반으로 한 디지털 X-선 발생장치 (DIGITAL DIAGNOST VR, Philips, Netherland)를 사용 하였다. Table 1은 X-ray tube assembly와 detector의 기 본 특성을 조사한 것이다.

Table 1. Principal characteristics of	Digital Radiography System			
DETECTOR	Trixell			
Detection type	Indirect			
X-Ray Conversion	Cesium lodide Scintillator			
Receptor Type	Amorphous Silicon			
Panel Active Size	43 x 43 cm			
Pixel Pitch	143 Micron			
Active Pixel Matrix	3,001 x 3,001			
Bit Processing	14 bits			
Limiting Resolution	3.5 LP/mm			
Dose range	400~800			
Detector Cooling	Air			
Anode heat capacity	300,000 HU			
Focal Spots	0.6/1.2mm			
Anode angle	13°			
Normal Voltage	150kV			
Permanent filter(mmAl)	2.5			

X-선 발생장치의 고유여과는 2.5mmAl 이며 added filter는 사용하지 않았다. '진단용방사선발생장치의 안 전관리에 관한 규칙'의 검사기준을 통과한 장비를 사 용하여 실험결과에 대한 객관성을 확보였다^[6].

조직등가물질로 이루어진 일반 촬영용 전신형 팬텀 whole body human phantom PBU-50 (Kyoto, kagaku, Japan)을 모의 환자로 실험하였다.

첫 번째 실험 조건은 Abdomen supine 검사 조건인 81kV를 기준으로 mAs를 고정하고 kV값을 24단계의 변화에 따라 실험하였고, 두 번째 실험 조건은 kV를 고정하고 mAs값을 25단계 변화를 주고 실험하였다.

실험영상의 DICOM header 정보에서 EI 와 DAP를 측정하였다.

2. Image quality

EI 변화에 따른 영상의 화질 평가를 하기 위해 DICOM image processing software (Image J Version 1.43u; National Institutes of Health, Bethesda, MD, USA) 를 이용하였다.

임상에서 사용하고 있는 검사 조건을 기준으로 실 험 조건에 대한 화질의 차이를 정량적으로 측정 가능 한 SNR(Signal to Noise Ratio), PSNR(Peak Signal to Noise Ratio), RMSE(Root Mean Square Error), MAE(Mean Absolute Error)등을 측정하여 결과값을 비 교하였다^{[7][8]}.

3. Source of Spectrum to be Processed

Photon energy spectrum은 보통 연속 X-선과 특성 X-선으로 나타난다. 특성 X-선은 전자 궤도간의 에너지 차에 관계되는 것으로, 그 파장은 표적으로 사용된 원 소에 따라 고유하며 X-선관에 걸어준 전압과는 관계 없다.

kV변화에 따라 photon energy spectrum의 가로축인 에너지는 변화하지 않고 X-선의 선량만 변화하게 된 다.

kV변화에 따른 광자의 fluence 변화를 simulation 하 기 위해 SRS-78 프로그램에 입력하여 하였다. Fig 1.

"Journal of the Korean Society of Radiology, Volume 7, Number 1"

Fig 1. Photon Energy simulation by using SRS-78

4. Effective dose

노출지수 변화에 따른 환자의 organ dose와 effective dose, risk factor를 계산하기 위하여 DICOM header정보 에서 측정한 DAP값을 PCXMC Dose Calculations Version 2.0.1(PCXMC, STUK, Helsinki, Finland)프로그램 에 입력하였다. Fig 2.

PCXMC프로그램은 다양한 검사조건에 따른 소아와 성인phantom을 이용하여 방사선 조사로 인한 phantom 의 유효 선량과 organ dose, risk factor를 ICRP 103(2007) 버전과 ICRP 60(1991)버전의 tissue 가중인자를 사용하 여 simulation하는 Monte Carlo프로그램이다.

Fig 2. Effective dose calculation by Monte Carlo simulation

Ⅲ. 결과

본 연구에서 Exsposure Index변화에 따른 DAP값을 측정하기 위해 kV고정 실험과 mAs고정 실험 영상의

DICOM header를 분석하였다.

첫 번째 검사조건변화에 따른 DAP과 EI 값은 임상 에서 일반적으로 사용하고 있는 Abdomen supine 노출 조건인 81kV에 20mAs를 기준으로 실험하였다. 81kV에 20mAs의 DAP값은 1918.5mGycm2로 나타났으며 kV와 mAs 증가에 따라 DAP값은 증가하고 EI값은 감소하였 고 kV와 mAs 감소에 따라 DAP값은 감소하고 EI값은 증가하였다. (Table 2, Table3)

Table 2. Dose Area Product, EI, SNR(dB), PSNR(dB), RMSE and

rabre	MAE by kV change					51	4794.8	80	17.301	24.323	248.945		
kV	DAP (mGycm2)	EI	SNR (dB)	PSNR (dB)	RMSE	MAE	40	3837.0	100	20.274	27.296	176.79	
125	4460.6	40	12.056	19.115	453.423	414.610	32	3070.0	125	23.827	30.849	117.44	
117	3957.0	50	14.860	21.919	328.309	299.552	25	2398.8	160	27.483	34.505	77.091	
109	3465.4	63	16.808	23.868	262.344	239.585							
102	3048.5	80	19.434	26.493	193.902	174.805	20	1919.4	200	00	8	0	
96	2708.6	100	23.178	30.237	126.006	110.864	16	1535.9	250	28.8	35.822	66.244	
90	2377.6	125	27.157	34.216	79.699	67.221	12	1199.4	320	26.919	33.941	82.263	
85	2124.0	160	28.477	35.536	68.460	52.763							
81	1918.5	200	8	8	0	0	10	959.7	400	25.612	32.634	95.62	
77	1731.9	250	28.730	35.789	66.494	55.693	8	768.9	500	24.839	31.86	104.53	
73	1549.6	320	26.378	33.438	87.172	74.529	6	606.9	630	24.756	31.778	105.522	
70	1413.5	400	25.042	32.102	101.666	87.425		400.0		04 500	04.04	407 500	
66	1249.5	500	23.890	30.949	116.090	100.166	5	480.3	800	24.588	31.61	107.583	
63	1125.8	500	23.192	30.252	125.799	108.543	4	384.5	1000	24.289	31.311	111.357	
60	1002.8	630	22.091	29.150	142.803	124.361	3	306.8	1250	24.14	31.162	113.283	
57	891.9	800	21.608	28.667	150.975	130.368		040.7	2000	22 022	20.054	116 004	
55	817.4	1000	20.984	28.043	162.217	140.018		240.7	2000	23.902	50.904	110.024	
52	707.0	1250	20.083	27.142	179.951	154.370	2	194.6	2500	23.516	30.537	121.727	
50	633.0	1600	19.417	26.476	194.293	165.599	1	156.6	3200	23.272	30.294	125.184	
48	569.7	2000	18.617	25.676	213.038	180.475	1	122 7	4000	22 613	29 635	135 054	
46	505.8	2000	15.896	22.955	291.401	245.724	·	122.1			20.000	100.001	
44	442.3	2500	15.567	22.626	302.647	252.656	1	96.8	6300	22.001	29.023	144.91	
42	378.9	3200	15.547	22.606	303.356	249.981	1	75.7	8000	20.421	27.442	173.834	
41	347.1	4000	15.395	22.455	308.691	252.655	1	57.5	8000	20.183	27.205	178.658	
40	315.8	4000	15.675	22.734	298.919	242.200		45.4	0000	10.045	05.007	000.010	
							1	45.1	8000	18.945	25.967	206.016	

Table 3. Dose Area Product, EI, SNR(dB), PSNR(dB), RMSE and MAE by mAs change

PSNR

(dB)

15.586

17.517

19.388

21.708

RMSE

680.733

545.015

439.415

336.384

MAE

594.175

482.841

388.14

295.516

217.566

153.652

102.413

64.262

0

54.98

69.768

80.899

88.4

88.159

89.875

93.841

95.676

97.85

102.776

105.818

113.62

121.461

141.698

145.629

164.49

SNR

(dB)

8.564

10.495

12.366

14.687

E١

32

40

50

63

DAP

(mGycm²)

11984.6

9588.6

7671.1

6041.2

mAs

127

100

81

64

Fig. 3 a. 96kV 20mAs and PSNR is 30.237dB, b. 81kV 20mAs and PSNR is ∞dB, c. 63kV 20mAs and PSNR is 30.252dB, d. 81kV 32mAs and PSNR is 30.849dB, e. 81kV 1mAs and PSNR is 30.294dB

두 번째 81kV에 20mAs 의 Abdomen supine 영상을 reference로 하여 kV변화에 따른 Image quality를 비교하 기 위하여 SNR(dB), PSNR(dB), RMSE, MAE수치를 비 교하였다. SNR(dB)은 reference영상을 기준으로 kV와 mAs 변화에 따라 감소하였고 RMSE와 MAE값은 증가 하였다. kV조건 변화에 따른 PSNR(dB) 값은 63kV에서 96kV까지만 30 dB이상으로 측정되었고 mAs 조건 변 화에 따른 PSNR(dB) 값은 1mAs에서 32mAs까지 30 dB 이상으로 측정되어 육안으로 Image Quality의 변화를 알 수 없었다.fig 3.

즉 Image Quality의 저하 없는 kV와 mAs의 변화에 따른 DAP값은 mAs를 고정하였을 경우 96kV에서 2708.6mGycm2, 63kV 에서 1125.8 mGycm2로 약 2.4배 의 차이가 있었으며 kV를 고정하였을 경우 32mAs에서 3070.0 mGycm2, 1mAs에서 156.6mGycm2로 약 19.6배의 차이가 있었다. Fig 4.은 kV변화에 따른 photon energy spectrum 의 변화를 나타낸다.

Fig 4. Calculated photon spectra: 40 kV from the 125kV

kV 증가에 따라 연속 X선이 Tube에 부여된 관전압 의 범위에서 분포하고 59keV부근에서 L각 전자의 특성 X-ray가 발생하고 70keV 에서 K각 전자의 특성 X-ray가 발생하고 있다. Table 5.는 Image Quality의 저하가 없는 kV에 따른 Photon energy의 특성을 나타낸다.

Table 4. Analysis of processed spectrum

	Mean Photon	Air Kerma	1stHVL	
r.v.	Energy (keV)	(Gy /mAs at 750mm)	(mmAl)	
96	48.5	224	3.485	
90	46.6	201.9	3.235	
85	45	183.9	3.029	
81	43.6	169.8	2.868	
77	42.1	155.9	2.71	
73	40.6	142.4	2.558	
70	39.5	132.5	2.449	
66	38.1	119.8	2.311	
63	37.1	110.3	2.208	

Photon energy의 평균값은 96kV에서 48.5keV, 81kV에 서 43.6keV, 63kV에서 37.1keV로 나타났다. 공기 중에 부 여하는 운동에너지의 합인 air kerma값은 96kV에서 224, 81kV에서 169.8, 63kV에서 110.3으로 나타나 약 2배의 차 이를 나타냈다. kV에 따른 1stHVL은 96kV에서 3.485mmAl, 81kV에서 2.868 mmAl, 63kV에서 2.208 mmAl 으로 나타나 약 1.57배의 선질의 차이를 나타냈다.

Table 5는 Image Quality의 저하가 없는 kV의 DAP값 을 PCXMC에 입력하여 Monte Carlo simulation에 의해 유효선량을 나타낸다.

Table 5. A comparison of the Effective dose by kV change.

kV	Effective dose ICRP60 (mSv)	Effective dose ICRP103 (mSv)
96	0.736269	0.698703
90	0.646284	0.61331
85	0.577363	0.547905
81	0.521497	0.494889
77	0.470777	0.446757
73	0.421213	0.399722
70	0.384225	0.364621
66	0.339646	0.30052
63	0.30052	0.285187

ICRP60에서 63kV에서는 유효선량이 0.30052mSv, 81kV에서는 0.521497mSv, 96kV에서는 0.736269 mSv로 나타나 약 2.5배의 유효선량차이가 있었다. ICRP103에 서도 63kV에서는 유효선량이 0.285187mSv, 81kV에서 는 0.494889mSv, 96kV에서는 0.698703mSv로 나타나 약 2.5배의 유효선량 차이가 있었다.fig 5.

Fig 6.의 risk of exposure-induced death(REID) for various cancer는 Image Quality의 저하가 없는 kV선택에 따른 결정적 영향이 아닌 확률적 영향의 복부 부분 risk factor를 나타낸다.

조사야 내의 장기 중 조직가중치가 가장 높은 stomach cancer의 발병확률이 가장 높았으며 kV 선질 의 감소에 따라 cancer발병 확률도 떨어졌다.

Ⅲ. 고찰

디지털 방사선 장비는 아날로그 방식과 달리 넓은 노출지수를 갖는다. 노출지수가 넓다는 것은 bit depth 가 넓다는 것이고 필름과 비교하여 검사조건에 대해 kV선택이 넓다는 것을 의미한다. Film/screen방식은 speed가 100 ~ 400정도로 사람의 눈의 농도 구분 단계 인 약 101.5의 dynamic rang에 맞춰 검사하였다. 디지털 방사선과 비교하여 상대적으로 좁은 dynamic rang로 인하여 환자에게 1010인 넓은 노출지수를 갖는 디지털 방사선 보다 검사조건 선택의 폭이 좁았다. 디지털 방 사선은 under exposure와 over exposure 상에서도 판독 가능한 Image quality를 나타낼 수 있다. 따라서 디지털 방사선은 검사자가 직관적으로 환자에게 피폭되는 선 량에 대해 쉽게 알 수 없다. 영국 자료에 따르면 Film/screen방식에서도 같은 검사라도 병원에 따라 약 71배의 환자선량의 차이가 있었다^[9].

디지털 방사선에서는 넓은 노출지수로 인해 더 많 은 환자선량의 차이가 발생한다. 노출지수에 따른 유 효선량값에서도 적정한 quality의 Image를 기준으로 약 4배 이상의 차이가 나타났다. 본 연구에서 유효선량은 0.285187mSv 에서 0.698703mSv 까지 적은 양으로 나타 났지만 동일 부위의 다른 검사와 반복적인 검사로 인 하여 확률적 영향은 증가한다. 또한 성장기 어린이의 경우 방사선 감수성이 높고 남아있는 여생이 길며, 여 러 차례 검사할 가능성이 높기 때문에 적은 양의 방사 선도 암 발생 확률을 높이는 요인으로 작용하므로 가 능하면 방사선 선량에 대해 최적화 하려는 노력이 필 요하다^[10]. 적정한 Image quality에 대해 EI의 변화는 환 자피폭량의 간접적인 지표로서 이용되며 적정 EI는 200-800이 적정하다^[11]. 81kV를 기준으로 PSNR값이 30dB이상인 EI값은 100-500사이로 나타나 ICRP 권고 에 따라 유효선량을 약 2.5배 가량 최적화 할 수 있으 며 조사야 내의 Risk factor또한 최적화 할 수 있다. ICRP 60과 ICRP 103의 유효선량의 감소비율의 차이점 은 생물학적인 조직 가중치의 변화로 나타났다.

본 연구는 디지털 방사선 환경에서 선량감소에 따 른 화질 저하 없이 넓은 노출지수를 이용하여 양질의 image quality를 유지할 수 있음을 확인 하였다.

Ⅲ. 결론

디지털 방사선환경에서 영상의 화질과 피폭선량은 비례관계이다. 디지털 방사선 장비의 넓은 노출지수는 적은 선량으로 영상의 화질저하 없이 검사가 가능하 다. 그러나 operating factor중에 하나인 kV와 mAs의 변 화 따라 영상의 화질과 피폭선량에 대해 검증한 것과 같이 계속적인 연구를 통해 필요이상의 선량을 사용 하여 검사하는 병원에 대해 지속적인 교육 및 지도를 통해 개선해 나갈 필요성이 있다. 또한 우리나라에 현 실에 맞는 디지털 방사선 Technical chart를 마련하여 양질의 영상과 환자피폭선량에 대한 기준선량을 마련 해야 할 것이다.

참고문헌

- ICRP: 1990 Recommendations of the International Commission on RadiologicalProtection. Publication 60, Annals of the ICRP Vol. 21, No. 1-3, Pergamon Press,Oxford(1991)
- UNSCEAR 2000 Report Vol. I Source and Effects of Ionization Radiation, AnnexD Medical Radiation Exposure, UNSCEAR(2000)
- [3] Korner, M., et al. Advances in digital radiography: physical principles and system overview.Radiographics, Vol. 27, No. 3, pp. 675-686,2007.
- [4] Williams, M. B., et al. Digital radiography image quality: image acquisition. JAmCollRadiol, Vol. 4. No. 6, pp.371-388,2007
- [5] Hyunsoo, Kim. et al. Picture Quality According to the Type of Detector in Full-field Digital Mammography. Journal of the Korean Physical Society.Vo. 58, No 2, pp.364-371.2011
- [6] 「진단용방사선발생장치의 안전관리에 관한 규칙」

"Journal of the Korean Society of Radiology, Volume 7, Number 1"

보건복지가족부령 제 156호. (2010.01.22 개정).

- [7] Y. HASHIMOTO, S. SAMPEI, N. MORINAGA. Channel Monitor-based Unequal Error Protection with Dynamic OFDM Subcarrier Assignment for Video Transmission. In Proceedings of 2002 IEEE Vehicular Technology Conference, Fall 2002.
- [8] Ung Keun Cho, Jin Hyuk Hong, Sung Bae Cho, Image enhancement based on the Genetic Algorithm for reducing impulsive noises. Vol. 33, No. 1(B), 2006.
- [9] NRPB R200 : Anational survey of dose to patients undergoing a selection of routine X-ray examination in English hospitals.National Radiological Protection Board, England, 1986.
- [10] Brenner DJ, Hall EJ. Computed tomography: an increasing source of radiation exposure. N Engl J Med Vol. 357, pp.2277-2284, 2007.
- [11] Shepard, S. J., et al., An exposure indicator for digital radiography: AAPM Task Group 116 (executive summary), Medical physics. Vol 36, No. 7, pp.2898-2914, 2009.