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Abstract—Detailed study on how the plasma process 

during the sidewall spacer formation suppresses the 

formation of silicide is done. In non-patterned wafer 

test, it is found that both fluorocarbon reactive ion 

etch (RIE) and TEOS plasma-enhanced deposition 

processes modify the Si surface so that the silicide 

reaction is chemically inhibited or suppressed. In 

order to investigate the cause of the chemical 

modification , we analyze the elements on the silicon 

surface through Auger Electron Spectroscopy (AES). 

From the AES result, it is found that the carbon 

induces chemical modification which blocks the 

reaction between silicon and nickel. Thus, protecting 

the surface from the carbon-containing plasma 

process prior to nickel deposition appears critical in 

successful silicide formation.   

 

Index Terms—Nickel silicide, plasma-enhanced 

deposition, reactive ion etch, sidewall spacer  

I. INTRODUCTION 

As the logic CMOS technology goes to deep-

submicron nodes beyond 100-nm, nickel silicide has 

attracted attention as an alternative for future nodes due 

to low resistivity, good sheet resistance in narrow line-

width and low Si consumption [1-8]. And, not like its 

precedents such as titanium and cobalt, nickel forms the 

least resistive silicide phase at low temperature below 

500℃, which makes nickel silicide formation more 

sensitive to the pre-treatment and the surface defects 

before the silicide process [9, 10]. Especially, the control 

of “plasma damage” during sidewall spacer formation is 

known to be critical to successful growth of silicide. 

However, whether the physical damage on the silicon 

lattice or the chemical effect plays a role in suppressing 

the silicide formation hasn’t been yet clarified.  

In this work, we try to analyze the details of the 

process by reproducing the situation that “plasma 

damage” suppresses silicide formation and investigating 

it with step-by-step non-patterned wafer test. 

II. EXPERIMENTAL 

For nickel silicide formation, the following processes 

were done in the fabrication facilities of Inter-University 

Semiconductor Research Center located in Seoul National 

University. Right after 100:1 diluted HF cleaning removed 

residual or native oxide from 6 inch p-type Si (100) prime 

wafers, 200Å nickel was deposited using Applied 

Materials EnduraTM Sputter System. Silicidation anneal 

was performed for 60 sec at 450℃ in N2 ambient using 

KVR-3006T RTP System of Korea Vacuum Tech. 

Remaining or un-reacted metal after anneal was stripped 

with 4:1 mixture of 98% H2SO4 and 30% H2O2 at 80℃. 

After nickel silicide process, analysis was done by using 

sheet resistance, SEM and TEM image. 
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III. RESULTS AND DISCUSSION 

First, a situation that silicide does not properly grow 

after sidewall spacer formation is reproduced following 

the sequence shown in Fig. 1. Wafer cleaning, gate 

oxidation and gate poly-Si deposition are sequentially 

performed. Then, gate patterning is done using hydrogen 

bromide (HBr) gas, and sidewall spacer is formed using 

plasma-enhanced deposition and fluorocarbon reactive 

ion etch (RIE). After that, silicidation process is 

performed. As expected, the measured sheet resistance is 

unacceptably high and no nickel silicide is seen from the 

cross-sectional image (Fig. 1). 

In order to understand the physics behind this 

phenomenon, non-patterned wafer test is designed as 

shown in Fig. 2. Fig. 3 shows the sheet resistances 

measured from each experimental group. The control 

nickel silicide (T1) formed on a bare wafer without any 

RIE or dielectric deposition steps as a reference shows 

sheet resistance as low as 4 ohm/sq., which indicates 

successful formation of silicide as shown in Fig. 4.  

However, once TEOS deposition and RIE processes 

are performed before silicide formation (T2), no silicide 

is observed from the cross-section and the sheet 

resistance is measured very high. 

 

    
 

 

Fig. 1. Cross-sectional SEM image of the gate and sidewall 

after silicidation (No silicide is seen). 

 

 

Fig. 2. Design of non-pattern wafer test (T2*: O2-plasma 

treatment). 
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Fig. 3. Sheet resistances measured from each experimental 

group. 

 

 

Fig. 4. TEM image of nickel silicide on control group (T1). 
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To find out whether this occurs by RIE or deposition 

processes, a partial RIE sample (T3) is prepared. After 

the deposited TEOS is partially etched by RIE, the 

residual oxide is stripped off using the diluted HF 

solution. The reason why the residual oxide is removed 

using wet chemical is to only consider deposition effect 

without RIE effect. Sheet resistance value in Fig. 3 and 

TEM image in Fig. 5 show that silicide is formed on this 

sample. In order to understand whether the suppression 

of silicide formation is induced by the physical damage 

or chemical alteration of the surface, silicide process is 

done on amorphous silicon film (T5). Again, this sample 

shows low sheet resistance (Fig. 3) and successful 

silicide formation as in Fig. 6 (T5). Thus, the physical 

damage has no effect on silicide process. To sum up these 

results, the chemical modification of silicon surface by 

carbon-containing RIE plasma appears to be the root 

cause of the suppression mechanism. To investigate the 

cause of this chemical modification, we analyze the 

elements on the silicon surface that went through TEOS 

deposition and RIE processes, using PHI 700Xi Scanning 

Auger Nanoprobe of Physical Electronics Inc. Fig. 7 

shows the atomic concentration of each element in the 

depth direction from silicon surface. Five elements are 

detected; carbon, oxygen, fluorine, silicon and nickel.  

Nickel on silicon surface is used as a capping layer. By 

carbon-containing RIE plasma process, there is a 

significant amount of carbon combined with silicon on 

surface as shown in Fig. 7(a). From this result, carbon 

seems to be introduced into the silicon during RIE 

process, similarly to dopants of plasma doping process 

[11]. In nickel silicide process, it is known that the 

formation temperature increases as an amount of 

incorporated carbon increases. This is because the carbon 

 

Fig. 5. TEM image of nickel silicide after partial TEOS etching 

and oxide wet strip process (T3). 

 

 

Fig. 6. SEM image of nickel silicide on amorphous silicon 

(T5). 
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Fig. 7. Atomic concentration of each element in the depth 

direction from silicon surface (a) before O2-plasma treatment, 

(b) after O2-plasma treatment. 
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in the Si system suppresses the nickel mono-silicide 

formation by making the texture of mono-silicide on the 

substrate unstable [12, 13]. After O2-plasma treatment is 

done, these carbon elements can be removed as shown in 

Fig. 7(b). Thus, we can confirm that the carbon induces 

the chemical modification which suppresses the reaction 

between silicon and nickel. From this result, nickel 

silicide can be formed by using O2-plasma treatment 

(T2*) after TEOS deposition and RIE processes (Fig. 8). 

Finally, Medium-Temperature Oxide (MTO) deposition 

instead of TEOS is tried to understand the effect of 

plasma during TEOS deposition process (T4). While the 

sheet resistance of TEOS group (T3) is slightly higher 

than that of the control group, the value of MTO group is 

similar to that of control group. And nickel silicide is 

formed well as shown in Fig. 9. This means that plasma-

assisted surface modification occurs during TEOS 

deposition although it is not as severe as in the case of 

RIE.  

Ⅲ. CONCLUSIONS 

We have investigated how plasma process during 

sidewall formation can influence the formation of nickel 

silicide. Plasma-assisted surface modification is the key 

mechanism to suppress the reaction between nickel and 

silicon. From this study, we can understand either 

protecting the silicon surface from carbon-containing 

plasma or removing the plasma-modified surface is 

crucial to successful future silicide technology. 
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Fig. 9. TEM image of nickel silicide after partial MTO etching 

and oxide wet strip process (T4). 
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