DOI QR코드

DOI QR Code

Infleunce of Nozzle Tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

  • Yu, Jaekeun (Department of Advanced Materials Engineering, Hoseo University) ;
  • Kim, Donghee (Department of Anesthesiology, Dankook University)
  • Received : 2012.11.30
  • Accepted : 2012.12.26
  • Published : 2013.02.27

Abstract

In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.

Keywords

References

  1. M. Schiemann, S. Wirtz, V. Scherer and F. Barhold, Powder Technol., 228, 301 (2012). https://doi.org/10.1016/j.powtec.2012.05.037
  2. J. Yu and D. Kim, J. Nanosci. Nanotechnol., 12, 1545 (2012). https://doi.org/10.1166/jnn.2012.4625
  3. J. H. Yi, J. H. Kim, H. Y. Koo, Y. N. Ko, Y. C. Kang and J. H. Lee, J. Power Sources, 196, 2858 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.038
  4. J. K. Yu and D. H. Kim, J. Ceram. Soc. Jpn., 117, 1078 (2009). https://doi.org/10.2109/jcersj2.117.1078
  5. J. Yu, S. Kang, K. C. Chung. J. S. Han and D. H. Kim, Mater. Trans., 48, 249 (2007). https://doi.org/10.2320/matertrans.48.249
  6. J. Yu, S. Kang, J. Kim, J. Kim, J. Han, J. Yoo, S. Lee and Z. Ahn, Mater. Trans., 47, 1838 (2006). https://doi.org/10.2320/matertrans.47.1838
  7. J. Yu, G. Kim, T. Kim and J. Kim, Mater. Trans., 46, 1695 (2005). https://doi.org/10.2320/matertrans.46.1695
  8. M. A. A. Elmasry, A. Gaber and E. M. H. Khater, Powder Technol., 90, 165 (1997). https://doi.org/10.1016/S0032-5910(96)03220-2
  9. D. Majumdar, T. A. Shefelbine, T. T. Kodas and H. D. Glicksman, J. Mater. Res., 11, 2861 (1996). https://doi.org/10.1557/JMR.1996.0361
  10. T. C. Pluym, T. T. Kodas, L. -M. Wang and H. D. Glicksman, J. Mater. Res., 10, 1661 (1995). https://doi.org/10.1557/JMR.1995.1661
  11. T. C. Pluym, S. W. Lyons, Q. H. Powell, A. S. Gurav, T. T. Kodas, L. M. Wang and H. D. Glicksman, Mater. Res. Bull., 28, 369 (1993). https://doi.org/10.1016/0025-5408(93)90070-T
  12. A. Gurav, T. Kodas, T. Pluym and Y. Xiong, Aerosol Sci. Technol., 19, 411 (1993). https://doi.org/10.1080/02786829308959650
  13. G. L. Messing, S. C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc., 76, 2707 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  14. A. Antony, M. Nisha, R. Manoj and M. K. Jayaraj, Appl. Surf. Sci., 225, 294 (2004). https://doi.org/10.1016/j.apsusc.2003.10.017
  15. L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira and H. R. Moutinho, Mater. Res. Bull., 39, 993 (2004). https://doi.org/10.1016/j.materresbull.2004.03.008
  16. Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang, Vacuum, 75, 183 (2004). https://doi.org/10.1016/j.vacuum.2004.01.081
  17. I. Barin, Thermochemical Data of Pure Substances, p. 1392-1404, VCH, Germany (1989).

Cited by

  1. Application of Spray Pyrolysis Process for the Preparation of Nano Sized Cobalt Oxide Powder vol.24, pp.1, 2014, https://doi.org/10.3740/MRSK.2014.24.1.25
  2. Effect of the Concentration of Cobalt Chloride Solution for the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process vol.24, pp.6, 2014, https://doi.org/10.3740/MRSK.2014.24.6.277
  3. Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.662