DOI QR코드

DOI QR Code

Thermoelectric Properties of Mg3-xZnxSb2 Fabricated by Mechanical Alloying

기계적 합금법으로 제조한 Mg3-xZnxSb2의 열전물성

  • Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University) ;
  • Jang, Kyung-Wook (Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, Il-Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 김인기 (한서대학교 신소재공학과) ;
  • 장경욱 (한서대학교 신소재공학과) ;
  • 김일호 (한국교통대학교 신소재공학과)
  • Received : 2013.01.09
  • Accepted : 2013.01.28
  • Published : 2013.02.27

Abstract

$Mg_{3-x}Zn_xSb_2$ powders with x = 0-1.2 were fabricated by mechanical alloying in a planetary ball mill with a speed of 350 rpm for 24 hrs and then hot pressed under a pressure of 70 MPa at 773 K for 2 hrs. It was found that there were systematic shifts in the X-ray diffraction peaks of $Mg_3Sb_2$ (x = 0) toward a higher angle with increasing Zn for both the powder and the bulk sample and finally the phase of $Mg_{1.86}Zn_{1.14}Sb_2$ was formed at the Zn content of x = 1.2. The $Mg_{3-x}Zn_xSb_2$ compounds had nano-sized grains of 21-30 nm for the powder and 28-66 nm for the hot pressed specimens. The electrical conductivity of hot pressed $Mg_{3-x}Zn_xSb_2$ increased with increasing Zn content and temperature from 33 $Sm^{-1}$ for x = 0 to 13,026 $Sm^{-1}$ for x = 1.2 at 323 K. The samples for all the compositions from x = 0 to x = 1.2 had positive Seebeck coefficients, which decreased with increasing Zn content and temperature, which resulted from the increased charge carrier concentration. Most of the samples had relatively low thermal conductivities comparable to the high performance thermoelectric materials. The dimensionless figure of merit of $Mg_{3-x}Zn_xSb_2$ was directly proportional to the Zn content except for the compound with Zn = 1.2 at high temperature. The $Mg_{3-x}Zn_xSb_2$ compound with Zn = 0.8 had the largest value of ZT, 0.33 at 723 K.

Keywords

References

  1. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev., 48, 45 (2003). https://doi.org/10.1179/095066003225010182
  2. S. B. Riffat and X. Ma, Appl. Therm. Eng., 23, 913 (2003). https://doi.org/10.1016/S1359-4311(03)00012-7
  3. C. Wood, Rep. Progr. Phys., 51, 459 (1988). https://doi.org/10.1088/0034-4885/51/4/001
  4. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). https://doi.org/10.1038/nmat2090
  5. T. Kajikawa, N. Kimura and T. Yokoyama, in Proceedings of the 22nd International Conference on Thermoelectrics (LaGrande Motte, France, 2003), p. 305.
  6. C. L. Condron, S. M. Kauzlarich, F. Gascoin and G. J. Snyder, J. Solid State Chem., 179, 2252 (2006). https://doi.org/10.1016/j.jssc.2006.01.034
  7. F. Ahmadpour, T. Kolodiazhnyi and Y. Mozharivskyj, J. Solid State Chem., 180, 2420 (2007). https://doi.org/10.1016/j.jssc.2007.06.011
  8. H. X. Xin, X. Y. Qin, J. H. Jia, C. J. Song, K. X. Zhang and J. Jang, J. Phys. D Appl. Phys., 42, 165403 (2009). https://doi.org/10.1088/0022-3727/42/16/165403
  9. V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Y. Samunin and M. V. Vedernikov, Phys. Rev. B, 74, 045207 (2006). https://doi.org/10.1103/PhysRevB.74.045207
  10. C. Suryanarayana, E. Ivanov and V. V. Boldyrev, Mater. Sci. Eng. A, 304-306, 151 (2001). https://doi.org/10.1016/S0921-5093(00)01465-9
  11. J. Eckert and I. Borner, Mater. Sci. Eng. A, 239-240, 619 (1997). https://doi.org/10.1016/S0921-5093(97)00639-4
  12. T. Raghu, R. Sundaresan, P. Ramakrishnan and T. R. R. Mohan, Mater. Sci. Eng. A, 304-306, 438 (2001). https://doi.org/10.1016/S0921-5093(00)01444-1
  13. G. K. Williamson and W. H. Hall, Acta Metall., 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
  14. H. X. Xin, X. Y. Qin, X. G. Zhu and Y. Liu, J. Phys. D Appl. Phys., 39, 375(2006). https://doi.org/10.1088/0022-3727/39/2/020
  15. J. Tani, M. Takahashi and H. Kido, Phys. B, 405, 4219 (2010). https://doi.org/10.1016/j.physb.2010.07.014
  16. H. J. Goldsmid, Electronic Refrigeration, p.96, Pion Limited, Lodon, England (1986).
  17. T. M. Tritt, Recent Trends in Thermoelectric Materials Research I, p.10, Academic Press, Sandiego, USA (2001).

Cited by

  1. vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.176