DOI QR코드

DOI QR Code

Hot Corrosion Behavior of Inconel Alloys and Incoloy 800H in Molten LiCl-Li2O Salt

LiCl-Li2O 용융염에서 Inconel 합금 및 Incoloy 800H의 고온 부식거동

  • Received : 2012.12.03
  • Accepted : 2013.01.23
  • Published : 2013.02.27

Abstract

A study on the corrosion behavior of Inconel alloys and Incoloy 800H in molten salt of LiCl-$Li_2O$ was investigated at $650^{\circ}C$ for 24-312 hours in an oxidation atmosphere. The order of the corrosion rate was Inconel 600 < Inconel 601 < Incoloy 800H < Inconel 690. Inconel 600 showed the best performance suggesting that the content of Fe, Cr and Ni are the important factor for corrosion resistance in hot molten salt oxidation conditions. The corrosion products of Inconel 600 and Inconel 601 were $Cr_2O_3$ and $NiFe_2O_4$, In case of Inconel 690, a single layer of $Cr_2O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2O_4$ and inner layer of $Cr_2O_3$ were formed with an increase of corrosion time. In the case of Incoloy 800H, $Cr_2O_3$ and $FeCr_2O_4$ were observed. Most of the outer scale of the alloys was observed to be spalled from the results of the SEM analysis and the unspalled scale which adhered to the substrate was composed of three layers. The outer layer, the middle one, and the inner one were Fe, Cr, and Ni-rich, respectively. Inconel 600 showed localized corrosion behavior and Inconel 601, 690 and Incoloy 800H showed uniform corrosion behavior. Ni improves the corrosion resistance and too much Cr and/or Fe content deteriorates the corrosion resistance.

Keywords

References

  1. F. J. Kohl, G. J. Santoro, C. A. Stearns, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979). https://doi.org/10.1149/1.2129173
  2. T. Ishitsuka and K. Nose, Corros. Sci., 44, 247 (2002). https://doi.org/10.1016/S0010-938X(01)00059-2
  3. M. Spiegel, P. Biedenkopf and H. J. Grabke, Corros. Sci., 39, 1193 (1997). https://doi.org/10.1016/S0010-938X(97)00020-6
  4. S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990). https://doi.org/10.1149/1.2087031
  5. B. P. Mohanty and D. A. Shores, Corros. Sci. 46, 2893 (2004). https://doi.org/10.1016/j.corsci.2004.04.013
  6. H. R. Copson, J. Electrochem. Soc., 100, 257 (1953). https://doi.org/10.1149/1.2781115
  7. F. Colom andf A. Bodalo, Corros, Sci., 12, 731 (1972). https://doi.org/10.1016/S0010-938X(72)91224-3
  8. E. T. Turkdogan, Physical Chemistry of High temperature Technology, p. 5-24, Academic Press, New York, USA (1980).
  9. H. Izuta and Y. Komura, J. Jpn. Inst. Met., 58(10), 1196 (1994).
  10. A. Joshi and D. F. Stein, Corrosion, 28, 321 (1972). https://doi.org/10.5006/0010-9312-28.9.321
  11. R. T. Wu, K. Kawagishi, H. Harada and R. C. Reed, Acta Mater., 56(14), 3622 (2008). https://doi.org/10.1016/j.actamat.2008.03.046
  12. G. C. Wood, Corros. Sci., 2, 173 (1962). https://doi.org/10.1016/0010-938X(62)90019-7
  13. D. J. Srolovitz, R. A. Petkovic-Luton and M. J. Luton, Acta Metall., 31(12), 2151 (1983). https://doi.org/10.1016/0001-6160(83)90034-2