DOI QR코드

DOI QR Code

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering

스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성

  • Woo, Kee Do (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Kim, Sang Mi (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Kim, Dong Gun (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Kim, Dae Young (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Kang, Dong Soo (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development, Chonbuk National University)
  • 우기도 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 김상미 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 김동건 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 김대영 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터) ;
  • 강동수 (전북대학교 공과대학 신소재공학부, 신소재개발연구센터)
  • Received : 2012.12.10
  • Accepted : 2013.02.06
  • Published : 2013.02.27

Abstract

The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Keywords

References

  1. A. Nouri, X. Chen, Y. Li, Y. Yamaba, P. D. Hodgson and C. Wen, Mater. Sci. Eng., 485, 562 (2008). https://doi.org/10.1016/j.msea.2007.10.010
  2. G. He, J. Eckert, Q. L. Dai, M. L. Sui, W. Loser, M. Hagiwara and E. Ma, Biomaterials, 24, 5115 (2003). https://doi.org/10.1016/S0142-9612(03)00440-X
  3. Y. Okazaki, S. Rao, Y. Ito and T. Tateishi, Biomaterials, 19, 1197 (1998). https://doi.org/10.1016/S0142-9612(97)00235-4
  4. M. Long and H. J. Rack, Biomaterials, 19, 1621 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4
  5. E. Whiteside, Clin. Orthop., 247, 138 (1989).
  6. M. Niinomi, Mater. Sci. Eng. A, 243, 231 (1998). https://doi.org/10.1016/S0921-5093(97)00806-X
  7. C. Q. Ning and Y. Zhou, Biomaterials, 25, 3379 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.017
  8. L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva and F. Malvisi, Mater. Sci. Eng. A, 432, 108 (2006). https://doi.org/10.1016/j.msea.2006.06.013
  9. K. S. Lee, S. Seo, S. Jin, B. Yoo and Y. K. Jeong, Kor. J. Mater. Res., 22, 280 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.6.280
  10. H. W. Yoon, C. H. Song, Y. S. Yang and S. J. Yoon, Kor. J. Mater. Res., 22, 61 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.2.61
  11. C. Knabe, G. Berger, R. Gildenhaar, F. Klar and H. Zreiqat, Biomaterials, 25, 4911 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.059
  12. Dj. Veljovic, B. Jokic, R. Petrovic, E. Palcevskis, A. Dindune, I. N. Mihailescu and Dj. Janackovic, Ceram. Int., 35, 1407 (2009). https://doi.org/10.1016/j.ceramint.2008.07.007
  13. J. W. Song, H. S. Kim, S. S. Kim, J. M. Koo and S. J. Hong, J. Kor. Powd. Metal. Inst., 17, 242 (2010) (in Korean). https://doi.org/10.4150/KPMI.2010.17.3.242
  14. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 213-221, Plenum Publishing Co., NY, USA (1998).
  15. Y. M. Zhang, M. D. Thesis, p. 1-58, Harbin Institute of Technology, Harbin, China (2007).
  16. C. Q. Ning and Y. Zhou, Biomaterials, 23, 2909 (2002). https://doi.org/10.1016/S0142-9612(01)00419-7
  17. R. Sun, M. Li, Y. Lu and S. Li, Mater. Res. Bull., 41, 1138 (2006). https://doi.org/10.1016/j.materresbull.2005.11.006
  18. K. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon and D. L. Zhang, Met. Mater. Int., 14, 327 (2008). https://doi.org/10.3365/met.mat.2008.06.327
  19. K. D. Woo, D. S. Kang, M. S. Moon, S. H. Kim Z. Liu and A. N. Omran, Kor. J. Met. Mater., 48, 369 (2010) (in Korean). https://doi.org/10.3365/KJMM.2010.48.04.369
  20. R. Sun, M. Li, Y. Lu and X. An, Mater. Sci. Eng. C, 26, 28 (2006). https://doi.org/10.1016/j.msec.2005.05.003

Cited by

  1. Microstructure and Biocompatibility of Ti-Nb-Si-HA Composites Fabricated by Rapid Sintering Using HEMM Powders vol.23, pp.7, 2013, https://doi.org/10.3740/MRSK.2013.23.7.353
  2. Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering vol.24, pp.2, 2014, https://doi.org/10.3740/MRSK.2014.24.2.111