DOI QR코드

DOI QR Code

Recent Trends in Studies on Botanical Fungicides in Agriculture

  • Yoon, Mi-Young (Eco-friendly New Materials Research Group, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Cha, Byeongjin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Jin-Cheol (Eco-friendly New Materials Research Group, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
  • Received : 2012.05.31
  • Accepted : 2012.11.02
  • Published : 2013.03.01

Abstract

Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites.

Keywords

References

  1. Avis, T. J. and Belanger, R. R. 2001. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl. Environ. Microbiol. 67:956−960.
  2. Bergsson, G., Arnfinnsson, J., Steingrimsson, O. and Thormar, H. 2001. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Ch. 45:3209−3212.
  3. Boyraz, N. and Ozcan, M. 2006. Inhibition of phytopathogenic fungi by essential oil, hydrosol, ground material and extract of summer savory (Satureja hortensis L.) growing wild in Turkey. Int. J. Food Microbiol. 107:238−242.
  4. Chang, H.-T., Cheng, Y.-H., Wu, C.-L., Chang, S.-T., Chang, T.-T. and Su, Y.-C. 2008. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresource Technol. 99:622−6270.
  5. Cheng, S. S., Liu, J. Y., Chang, E. H. and Chang, S. T. 2008. Anti-fungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technol. 99:5145−5149.
  6. Chludil, H. D., Muniain, C. C., Seldes, A. M. and Maier, M. S. 2002. Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis. J. Nat. Prod. 65:860−865.
  7. Cho, J.-Y., Choi, G. J., Lee, S.-W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2006a. Antifungal activity against Collectotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280−285.
  8. Cho, J.-Y., Choi, G. J., Lee, S.-W., Lim, H. K., Jang, K. S., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006b. In vivo antifungal activity against various plant pathogenic fungi of curcuminoids isolated from the rhizomes of Curcuma longa. Plant Pathol. J. 22:94−96. https://doi.org/10.5423/PPJ.2006.22.1.094
  9. Cho, J.-Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., Sung, N. D., Cho, K. Y. and Kim, J.-C. 2007. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag. Sci. 63:935−940.
  10. Cho, J.-Y., Kim, H. Y., Choi, G. J., Jang, K. S., Lim, H. K., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006c. Dehydro-$\alpha$-lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi. Pest Manag. Sci. 62:414−418.
  11. Choi, G. J., Lee, S.-W., Jang, K. S., Kim, J.-S., Cho, K. Y. and Kim, J.-C. 2004. Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Prot. 23:1215−1221.
  12. Choi, N. H., Choi, G. J., Jang, K. S., Choi, Y. H., Lee, S. O., Choi, J. E. and Kim, J.-C. 2008. Antifungal activity of the methanol extract of Myrisitica malabarica fruit rinds and the active ingredients malabaricones against phytopathogenic fungi. Plant Pathol. J. 24:317−321.
  13. Choi, N. H., Choi, G. J., Min, B.-S., Jang, K. S., Choi, Y. H., Park, M. S., Choi, J. E., Bae, K. and Kim, J.-C. 2009. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. J. Appl. Microbiol. 106:2057−2063.
  14. Copping, L. G. 2004. The Manual of Biocontrol Agents, 3rd Ed. BCPC Publications, Alton, Hants, UK, pp. 702.
  15. Copping, L. G. and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56:651−676.
  16. Dan, Y., Liu, H.-Y., Gao, W.-W. and Chen, S.-L. 2010. Activities of essential oils from Asarum heterotropoides var. mandshuricum against five phytopathogens. Crop Prot. 29:295−299.
  17. Edris, A. E. and Farrag, E. S. 2003. Antifungal activity of peppermint and sweet basil essential oils and their major aroma con¬stituents on some plant pathogenic fungi from the vapor phase. Nahrung. 47:117−121.
  18. Hou, C. T. and Forman, R. J. 2000. Growth inhibition of plant pathogenic fungi by hydroxyl fatty acids. J. Ind. Microbiol. Biot. 24:275−276.
  19. Khan, M. S. and Ahmad, I. 2011. In vitro antifungal, anti-elastase and anti-keratinase activity of essential oils of Cinnamomum-, Syzygium- and Cymbopogon-species against Aspergillus fumi-gates and Trichophyto rubrum. Phytomedicine 19:48−55. https://doi.org/10.1016/j.phymed.2011.07.005
  20. Konstantinidou-Doltsinis, S., Markellou, E., Kasselaki, A.-M., Fanouraki, M. N., Koumaki, C. M., Schmitt, A., Liopa-tsakalidis, A. and Malathrakis, N. E. 2006. Efficacy of Milsana, a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). Bio-Control 51:375−392.
  21. Kordali, S., Cakir, A., Akcin, T. A., Mete, E., Akcin, A., Aydin, T. and Kilic, H. 2009. Antifungal and herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicola Hub-Mor. and Achillea biebersteinii Afan. (Asteraceae). Ind. Crop Prod. 29:562−570.
  22. Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M. and Mete, E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technol. 99:8788−8795.
  23. Kosina, P., Gregorova, J., Gruz, J., Vacek, J., Kolar, M., Vogel, M., Roos, W., Naumann, K., Simanek, V. and Ulrichova, J. 2010. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia 81:1006−1012. https://doi.org/10.1016/j.fitote.2010.06.020
  24. Liangbin, H., Hongbo, L., Junliang, S. and Zeng, J. 2012. Effect of laminarin on Aspergillus Flavus growth and aflatoxin production. Adv. Mat. Res. 342:1168−1171.
  25. Liu, H., Wang, J., Zhao, J., Lu, S., Wang, J., Jiang, W., Ma, Z. and Zhou, L. 2009. Isoquinoline alkaloids from Macleaya cordata active against plant microbial pathogens. Nat. Prod. Commun. 4:1557−1560.
  26. Liu, S., Ruan, W., Li, J., Xu, H., Wang, J., Gao, Y. and Wang, J. 2008. Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 166:93−102. https://doi.org/10.1007/s11046-008-9124-1
  27. Morita, Y., Matsumura, E., Okabe, T., Fukui, F., Ohe, T., Ishida, N. and Inamori, Y. 2004. Biological activity of $\beta$-dolabrin, $\gamma$ thujaplicin, and 4-acetyltropolone, hinokitiol-related compounds. Biol. Pharm. Bull. 27:1666−1669.
  28. Nguefack, J., Leth, V., Lekagne Dongmo, J. B., Torp, J., Amvam Zollo, P. H. and Nyasse, S. 2008. Use of three essential oils as seed treatments against seed-born fungi of rice (Oryza sativa L.). American-Eurasian J. Agric. Environ. Sci. 4:554−560.
  29. Reglinski, T. 2009. Disease control in crops: Biological and environmentally friendly approaches. Chapter 4. Induced resistance for plant disease control, ed. by D. Walters, doi: 10.1002/9781444312157. Wiley-Blackwell, Oxford, UK.
  30. Saha, S., Walia, S., Kumar, J. and Parmar, B. S. 2010. Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogenic fungi. Pest Manag. Sci. 66:825−831.
  31. Shin, K.-S., Lee, S. and Cha, B. 2007. Antifungal activity of plumbagin purified from leaves of Nepenthes ventricosa x maxima against phytopathogenic fungi. Plant Pathol. J. 23:113−115.
  32. Singh, A. K., Pandey, M. B., Singh, S., Singh, A. K. and Singh, U. P. 2008. Antifungal activity of securinine against some plant pathogenic fungi. Mycobiology 36:99−101. https://doi.org/10.4489/MYCO.2008.36.2.099
  33. Soundharrajan, R. S., Belusamy, R., Ramasamy, R., Selladurai, M. and Srinivasan, N. 2003. Antifungal activity of some essential oils. J. Agric. Food Chem. 51:7596−7599.
  34. Thobunluepop, P., Udomsilp, J., Piyo, A. and Khengkhan, P. 2009. Screening for the antifungal activity of essential oils from bergamot oil (Citrus hystrix DC.) and tea tree oil (Melaleuca alternifolia) against economically rice pathogenic fungi: A driving force of organic rice cv. KDML 105 production. As. J. Food Ag-Ind. Special Issue: S374−S380.
  35. Walters, D., Raynor, L., Mitchell, A., Walker, R. and Walker, K. 2004. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 157:87−90. https://doi.org/10.1023/B:MYCO.0000012222.68156.2c
  36. Walters, D. R., Walker, R. L. and Walker, K. C. 2003. Lauric acid exhibits antifungal activity against plant pathogenic fungi. J. Phytopahol. 151:228−230.
  37. Wang, S.-Y., Chen, P.-F. and Chang, S.-T. 2005. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technol. 96:813−818.
  38. Yoon, M.-Y., Choi, G. J., Choi, Y. H., Jang, K. S., Park, M. S., Cha, B. and Kim, J.-C. 2010. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens. Lett. Appl. Microbiol. 51:511−517.
  39. Yoon, M.-Y., Kim, Y. S., Ryu, S. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Cha, B., Han, S.-S. and Kim, J.-C. 2011a. In vitro and in vivo antifungal activities of decursin and decursinol angelate isolated from Angelica gigas against Magnaporthe oryzae, the causal agent of rice blast. Pest Biochem. Physiol. 101:118−124.
  40. Yoon, M.-Y., Kim, Y. S., Choi, G. J., Jang, K. S., Choi, Y. H., Cha, B. and Kim, J.-C. 2011b. Antifungal activity of decursinol angelate isolated from Angelica gigas against Puccinia recondita. Res. Plant Dis. (in Korean) 7:25−31.
  41. Yoon, M.-Y., Choi, N. H., Min, B. S., Choi, G. J., Choi, Y. H., Jang, K. S., Han, S.-S., Cha, B. and Kim, J.-C. 2011c. Potent in vivo antifungal activity against powdery mildews of pregnane glycosides from the roots of Cynanchum wilfordii. J. Agric. Food Chem. 59:12210−12216.
  42. Zabka, M., Pavela, R. and Slezakova, L. 2009. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Int. Crops and Products 30:250−253.
  43. Zhang, J. F., Li, Y. B., Li, C. L. and Jiang, J. Q. 2006. Studies on chemical constituents in root tuber of Cynanchum auriculatum. Zhongguo Zhong Yao Za Zhi 31:814−816.
  44. Zhou, C.-X., Liu, J.-Y., Ye, W.-C., Liu, C.-H. and Tang, R.-X. 2003. Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron 59:5743−5747.

Cited by

  1. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae) vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00003
  2. Antimicrobial Cyclic Peptides for Plant Disease Control vol.31, pp.1, 2015, https://doi.org/10.5423/PPJ.RW.08.2014.0074
  3. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum vol.26, pp.6, 2013, https://doi.org/10.1007/s10534-013-9667-6
  4. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives vol.73, pp.1, 2017, https://doi.org/10.1002/ps.4422
  5. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. vol.139, 2017, https://doi.org/10.1016/j.ecoenv.2017.01.026
  6. Botanical insecticide research: many publications, limited useful data vol.19, pp.3, 2014, https://doi.org/10.1016/j.tplants.2013.11.005
  7. Extraction and Separation of Active Ingredients in Schisandra chinensis (Turcz.) Baill and the Study of their Antifungal Effects vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0154731
  8. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111501
  9. Gamma irradiation-induced disease resistance of pear (Pyrus pyrifolia “Niitaka”) against Penicillium expansum vol.165, pp.9, 2017, https://doi.org/10.1111/jph.12601
  10. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review vol.107, 2017, https://doi.org/10.1016/j.ecoleng.2017.06.058
  11. Chemical Composition and Anti-fungal Properties of Essential Oil fromTetrastigma sulcatum(Law.) Gamble Leaves vol.19, pp.3, 2016, https://doi.org/10.1080/0972060X.2015.1102652
  12. Antifungal activity of plant extracts against Embellisia astragali, the fungal causal agent of yellow dwarf and root-rot disease of standing milkvetch vol.66, pp.7, 2015, https://doi.org/10.1071/CP15012
  13. Garlic, from Remedy to Stimulant: Evaluation of Antifungal Potential Reveals Diversity in Phytoalexin Allicin Content among Garlic Cultivars; Allicin Containing Aqueous Garlic Extracts Trigger Antioxidants in Cucumber vol.7, 2016, https://doi.org/10.3389/fpls.2016.01235
  14. Foliar treatments with Gaultheria procumbens essential oil induce defense responses and resistance against a fungal pathogen in Arabidopsis vol.5, 2014, https://doi.org/10.3389/fpls.2014.00477
  15. Antifungal activity of sterols and dipsacus saponins isolated from Dipsacus asper roots against phytopathogenic fungi vol.141, 2017, https://doi.org/10.1016/j.pestbp.2016.12.006
  16. Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny) 2017, https://doi.org/10.1007/s11356-017-9236-6
  17. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea vol.118, 2015, https://doi.org/10.1016/j.pestbp.2014.10.015
  18. Searching for Novel Targets to Control Wheat Head Blight Disease—I-Protein Identification, 3D Modeling and Virtual Screening vol.06, pp.11, 2016, https://doi.org/10.4236/aim.2016.611079
  19. Chitosan for Eco-friendly Control of Plant Disease vol.11, pp.2, 2017, https://doi.org/10.3923/ajppaj.2017.53.70
  20. Plant responses to environmental stresses—from gene to biotechnology vol.9, pp.4, 2017, https://doi.org/10.1093/aobpla/plx025
  21. The Natural Product Citral Can Cause Significant Damage to the Hyphal Cell Walls of Magnaporthe grisea vol.19, pp.7, 2014, https://doi.org/10.3390/molecules190710279
  22. Evaluating the Potential Value of Natural Product Cuminic Acid against Plant Pathogenic Fungi in Cucumber vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111914
  23. against phytopathogenic fungi pp.1479-487X, 2019, https://doi.org/10.1080/09593330.2018.1427800
  24. Peach Brown Rot: Still in Search of an Ideal Management Option vol.8, pp.8, 2018, https://doi.org/10.3390/agriculture8080125
  25. isolates as biocontrol agents of phytopathogenic fungi vol.217, pp.1755-1315, 2019, https://doi.org/10.1088/1755-1315/217/1/012044
  26. Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane permeability pp.1993-0607, 2019, https://doi.org/10.1007/s11676-019-00883-3