DOI QR코드

DOI QR Code

Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV) Infection of Chinese Cabbage Plants Using Raman Spectroscopy

  • Kim, Saetbyeol (Department of Chemistry, Hanyang University) ;
  • Lee, Sanguk (Department of Chemistry, Hanyang University) ;
  • Chi, Hee-Youn (Smarteome. Co., Ltd.) ;
  • Kim, Mi-Kyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Jeong-Soo (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Su-Heon (School of Applied Biosciences, College of Agriculture & Life Scieneces, Kyungpook National University) ;
  • Chung, Hoeil (Department of Chemistry, Hanyang University)
  • Received : 2012.09.20
  • Accepted : 2012.10.10
  • Published : 2013.03.01

Abstract

Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS) was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV) infected Chinese cabbage leaves were collected by mixing with gold (Au) nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.

Keywords

References

  1. Beebe, K. R. and Kowalski, B. R. 1987. An introduction to multivariate calibration and analysis, Anal. Chem. 59:1007A- 1017A. https://doi.org/10.1021/ac00144a725
  2. Beebe, K. R., Pell, R. J. and Seasholtz, M. B. 1998. Chemometrics: A Practical Guide, Wiley-Interscience, New York, USA.
  3. Beier, B. D., Quivey, R. G. and Berger, A. J. 2012. Raman microspectroscopy for species identification and mapping within bacterial biofilms. AMB Express 2:1−7. https://doi.org/10.1186/2191-0855-2-1
  4. Chalcroft, J. and Matthews, R. E. F. 1966. Cytological changes induced by turnip yellow mosaic virus in Chinese cabbage leaves. Virology 28:555−562. https://doi.org/10.1016/0042-6822(66)90240-6
  5. Chen, M. C. and Lord, R. C. 1974. Laser-excited Raman spectroscopy of biomolecules. V. Conformational changes associated with the chemical denaturation of lysozyme. J. Am. Chem. SOC. 96:3038−3042.
  6. Chi, H., Liu, B., Guan, G., Zhang Z. and Han, M.-Y. 2010. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 135:1070–1075. https://doi.org/10.1039/c000285b
  7. Coomans, D., Massart, D. L. and Kaufman, L. 1979. Optimization statistical linear discriminant analysis in analytical chemistry. Anal. Chim. Acta 112:97-122. https://doi.org/10.1016/S0003-2670(01)83513-3
  8. El-Abassy, R. M., Donfack, P. and Materny, A. 2009. Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J.Raman Spectrosc. 40:1284−1289. https://doi.org/10.1002/jrs.2279
  9. Kaper, J. M. 1975. The Chemical Basis of Virus Structure Dissociation and Reassembly. North Holland/American Elsevier. New York, USA.
  10. Kim, J. S., Cho, J. D., Choi, H. S., Lee, S. H., Choi, G. S., Lee, S. Y., Kim, H. J. and Yoon, M. K. 2012. Ribgrass mosaic tobamovirus occurred on Chinese cabbage in Korea. Plant Pathol. J. 26:328−339.
  11. Lee, S. U., Chung, H. -I., Choi, H. S. and Cha, K. J. 2010. Using combinations of principal component scores from different spectral ranges in near-infrared region to improve discrimination for samples of complex composition. Microchemical J. 95:96-101. https://doi.org/10.1016/j.microc.2009.10.014
  12. Matthews, R. E. F. 1958. Studies on the relation between protein and nucleoprotein particles in turnip yellow mosaic virus infections. Virology 5:192−205. https://doi.org/10.1016/0042-6822(58)90018-7
  13. Moskovits, M. 1978. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69:4159−4161. https://doi.org/10.1063/1.437095
  14. Moskovits, M. 2005. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36:485−496. https://doi.org/10.1002/jrs.1362
  15. Mozharov, S., Nordon, A., Girkin, J. M. and Littlejohn, D. 2010. Non-invasive analysis in micro-reactors using Raman spectrometry with a specially designed probe. Lab Chip - Miniat. Chem. Biol. 10:2101−2107. https://doi.org/10.1039/c004248j
  16. Park, S. C., Kim, M. J., Noh, J. G., Chung, H. I., Woo, Y. A., Lee, J. H. and Kemper, M. S. 2007. Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy. Anal. Chim. Acta 593:46-53. https://doi.org/10.1016/j.aca.2007.04.056
  17. Prucek, R., Ranc, V., Kvitek, L., Panaeek, A., Zbooil, R. and Kolao, M. 2012. Reproducible discrimination between Gram-positive and Gram-negative bacteria using surface enhanced Raman spectroscopy with infrared excitation. Analyst 137: 2866−2870. https://doi.org/10.1039/c2an16310a
  18. Reid, M. S. and Matthews, R. E. F. 1966. On the origin of the mosaic induced by turnip yellow mosaic virus. Virology 28:563−570. https://doi.org/10.1016/0042-6822(66)90241-8
  19. Ryu, K. T., Haes, A. J., Park, H. Y., Nah, S. H., Kim, J. M., Chung, H. I., Yoon, M. Y. and Han, S. H. 2009. Use of peptide for selective and sensitive detection of an anthrax biomarker via peptide recognition and surface-enhanced Raman scattering. J. Raman Spectrosc. 41:121-124.
  20. Schatz, G. C. and Van Duyne, R. P. 2002. Electromagnetic mechanism of surface-enhanced spectroscopy. In: Handbook of Vibrational Spectroscopy, vol. 1, ed. by J. M. Chalmers and P. R. Griffiths, pp 759−774. Wiley, New York, USA.
  21. Todeschini, R. and Marengo, E. 1992. Linear discriminant classification tree: a user-driven multicriteria classification method. Chemom. Intell. Lab. Syst. 16:25-35. https://doi.org/10.1016/0169-7439(92)80075-F
  22. Turano, T. A., Hartman K. A. and Thomas, G. J. Jr. 1976. Studies of Virus Structure by Laser-Raman Spectroscopy. 3. Turnip Yellow Mosaic Virus. J. Phys. Chem. 80:1157−1163. https://doi.org/10.1021/j100552a008
  23. Turkevich, J., Stevenson, P. C. and Hilliery, J. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 11:55. https://doi.org/10.1039/df9511100055
  24. Wu, W., Mallet, Y., Walczak, B., Penninckx, W., Massart, D. L., Heuerding, S. and Erni, F. 1996. Comparison of regularized discriminant analysis, linear discriminant analysis and quadratic discriminant analysis applied to NIR data. Anal. Chim. Acta 329:257-265. https://doi.org/10.1016/0003-2670(96)00142-0
  25. Yu, N. T., Lin, T. S. and Tu, A. T. 1975. Laser Raman scattering of neurotoxins isolated from the venoms of sea snakes Lapemis hardwickii and Enhydrina schistosa. J. Biol. Chem. 250:1782− 1785.
  26. Zaitlin, M. 1975. Tobacco mosaic virus (Type strain). GMI/AAB Descriptions of plant viruses. No. 151.

Cited by

  1. Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. vol.8, pp.17, 2016, https://doi.org/10.1039/C6AY00381H
  2. Development of a Specific Diagnostic System for Detecting Turnip Yellow Mosaic Virus from Chinese Cabbage in Korea vol.56, pp.1, 2016, https://doi.org/10.1007/s12088-015-0557-1
  3. Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves vol.13, pp.1, 2017, https://doi.org/10.1186/s13007-017-0190-6